hmBERT-CoNLL-cp1

This model is a fine-tuned version of dbmdz/bert-base-historic-multilingual-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0710
  • Precision: 0.8690
  • Recall: 0.8888
  • F1: 0.8788
  • Accuracy: 0.9810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.06 25 0.4115 0.3593 0.3708 0.3649 0.9002
No log 0.11 50 0.2263 0.6360 0.6898 0.6618 0.9456
No log 0.17 75 0.1660 0.7250 0.7582 0.7412 0.9564
No log 0.23 100 0.1520 0.7432 0.7775 0.7600 0.9597
No log 0.28 125 0.1343 0.7683 0.8103 0.7888 0.9645
No log 0.34 150 0.1252 0.7973 0.8230 0.8099 0.9691
No log 0.4 175 0.1021 0.8118 0.8398 0.8255 0.9724
No log 0.46 200 0.1056 0.8153 0.8411 0.8280 0.9727
No log 0.51 225 0.0872 0.8331 0.8612 0.8469 0.9755
No log 0.57 250 0.1055 0.8226 0.8418 0.8321 0.9725
No log 0.63 275 0.0921 0.8605 0.8640 0.8623 0.9767
No log 0.68 300 0.0824 0.8600 0.8787 0.8692 0.9788
No log 0.74 325 0.0834 0.8530 0.8771 0.8649 0.9787
No log 0.8 350 0.0758 0.8646 0.8876 0.8759 0.9800
No log 0.85 375 0.0727 0.8705 0.8866 0.8784 0.9810
No log 0.91 400 0.0734 0.8717 0.8899 0.8807 0.9811
No log 0.97 425 0.0713 0.8683 0.8889 0.8785 0.9810

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train emilys/hmBERT-CoNLL-cp1

Evaluation results