File size: 2,797 Bytes
59ca4fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: microsoft/resnet-18
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-18-resnet-18
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.3541666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-18-resnet-18
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 5878685290980833992550249398272.0000
- Accuracy: 0.3542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:------------------------------------:|:------:|:----:|:------------------------------------:|:--------:|
| No log | 0.8889 | 6 | 5256596847186447919144532705280.0000 | 0.3542 |
| 6252348666680642391375611953152.0000 | 1.9259 | 13 | 5816409290772115792559022800896.0000 | 0.3542 |
| 5941338476045271956843984322560.0000 | 2.9630 | 20 | 5569209952566045840858865991680.0000 | 0.3542 |
| 5941338476045271956843984322560.0000 | 4.0 | 27 | 5764530657074993210784856670208.0000 | 0.3542 |
| 5978113032337293509815187800064.0000 | 4.8889 | 33 | 5717174614869048956753266343936.0000 | 0.3542 |
| 6377920275134342219963975073792.0000 | 5.9259 | 40 | 5885479454087068208512098107392.0000 | 0.3542 |
| 6377920275134342219963975073792.0000 | 6.9630 | 47 | 5693683372805207289944963284992.0000 | 0.3542 |
| 6201930657158778429750307192832.0000 | 8.0 | 54 | 5815479022353922335409086398464.0000 | 0.3542 |
| 6266525497982100125501481811968.0000 | 8.8889 | 60 | 5878685290980833992550249398272.0000 | 0.3542 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|