distilbert-base-uncased_fold_3_binary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8310
  • F1: 0.7584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.4560 0.7522
0.4008 2.0 578 0.4790 0.7567
0.4008 3.0 867 0.6368 0.7557
0.1967 4.0 1156 0.6854 0.7534
0.1967 5.0 1445 0.9823 0.7309
0.0768 6.0 1734 1.2531 0.7511
0.0202 7.0 2023 1.2906 0.7391
0.0202 8.0 2312 1.4025 0.7460
0.0087 9.0 2601 1.5713 0.7507
0.0087 10.0 2890 1.4212 0.7528
0.0162 11.0 3179 1.5775 0.7511
0.0162 12.0 3468 1.6361 0.7377
0.0048 13.0 3757 1.6972 0.7542
0.0098 14.0 4046 1.6569 0.7565
0.0098 15.0 4335 1.7547 0.7325
0.0042 16.0 4624 1.8108 0.7544
0.0042 17.0 4913 1.7593 0.7554
0.0041 18.0 5202 1.7582 0.7551
0.0041 19.0 5491 1.8200 0.7512
0.0029 20.0 5780 1.8310 0.7584
0.0018 21.0 6069 1.8146 0.7568
0.0018 22.0 6358 1.7870 0.7558
0.0029 23.0 6647 1.8508 0.7530
0.0029 24.0 6936 1.8327 0.7543
0.0001 25.0 7225 1.8546 0.7561

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.