File size: 1,881 Bytes
1e63c74
 
 
 
 
 
 
 
 
 
 
841336a
 
 
 
 
 
83c34a9
 
 
 
 
 
 
 
841336a
 
 
50aac1d
 
 
 
 
 
0173180
 
 
 
 
 
 
 
 
 
 
 
 
fed0e63
0173180
 
 
 
 
 
841336a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
language:
- tr
metrics:
- accuracy
- f1
- precision
- recall
library_name: transformers
pipeline_tag: text-classification
---

# About the Bert-Bank-Model

It is a Turkish BERT-based model that will analyze people's bank complaints and classify them according to one of eight categories. The classification headings are as follows:

- Diğer
- Hesap İşlemleri
- KKB Skor
- Kargo
- Kart İşlemleri
- Kredi İşlemleri
- Limit 
- Müşteri Temsilcisi

246412 thousand complaints were used in model training. The success rates in education are as follows.

|        | Kart İşlemleri | Kredi İşlemleri | Hesap İşlemleri | Kargo | Limit | Müşteri Temsilcisi |  KKB Skor | accuracy |
| ------ | ------  | ------ | ------  | ------ | ------ | ------ | ------ | ------ | 
| Precision | 0.977292 | 0.971119 | 0.985294 | 0.953096 | 0.98616 | 0.989115 | 0.991824 | 0.982336 |
| Recall  | 0.978114 | 0.960714 | 0.985294 | 0.986348 | 0.978590 | 0.982224  | 0.992679 | 0.982336 |
| F1 Score | 0.977703 | 0.965889 | 0.985294 | 0.969437 | 0.983577 |  0.985657  | 0.992251 | 0.982336 | 

# Example

```sh
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("elifftosunn/Bert-Bank-Model")
model = TFBertForSequenceClassification.from_pretrained("elifftosunn/Bert-Bank-Model", from_pt=True)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)

print(pipe('QNB Finansbank 1.39 oranlı 50.000 TL yeni müşterilere özel ihtiyaç kredisi 1.92 oranında veriyor amaç hesap açtırmak kampanyanın hiçbir gerçekçiliği yoktur. Resmen milletle dalga geçiyorsunuz. Ne demek oluyor bu. 1,39 dan kredi deyip içeriğine girince 2 katına çıkıyor. Böyle saçma bir banka'))

```

# Result

```sh
[{'label': 'Kredi İşlemleri', 'score': 0.9589990377426147}]
```