File size: 2,388 Bytes
2035f6d
eac884b
2035f6d
eac884b
107a4a2
 
 
eac884b
107a4a2
eac884b
 
 
 
8d94ca4
 
 
 
 
 
 
107a4a2
 
 
8d94ca4
 
 
 
 
 
 
 
 
 
 
 
 
2035f6d
eac884b
 
8d94ca4
eac884b
8d94ca4
eac884b
8d94ca4
 
eac884b
8d94ca4
eac884b
8d94ca4
eac884b
 
 
 
 
 
 
 
 
8d94ca4
eac884b
 
8d94ca4
eac884b
5ecfef0
eac884b
 
 
 
 
 
 
 
 
5ecfef0
eac884b
5ecfef0
eac884b
 
 
 
 
 
 
 
5ecfef0
eac884b
8d94ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac884b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
language: de
license: cc-by-4.0
tags:
- named-entity-recognition
- legal
- ner
datasets:
- elenanereiss/german-ler
metrics:
- precision
- recall
- f1
model-index:
- name: elenanereiss/bert-german-ler
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: elenanereiss/german-ler
      type: elenanereiss/german-ler
      args: elenanereiss/german-ler
    metrics:
    - name: F1
      type: f1
      value: 0.9546215361725869
    - name: Precision
      type: precision
      value: 0.9449558173784978
    - name: Recall
      type: recall
      value: 0.9644870349492672
pipeline_tag: token-classification
widget:
- text: "Herr W. verstieß gegen § 36 Abs. 7 IfSG."
---


# bert-german-ler

## Model description

This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the 
[German LER Dataset](https://huggingface.co/datasets/elenanereiss/german-ler).

## Intended uses & limitations

to do

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 16
- max_seq_length: 512
- num_epochs: 3

## Results 

```
eval_loss = 0.020239440724253654
eval_accuracy_score = 0.9953227664227791
eval_precision = 0.9212203128016991
eval_recall = 0.9458762886597938
eval_f1 = 0.9333855032769246
eval_runtime = 111.4147
eval_samples_per_second = 59.875
eval_steps_per_second = 3.743
epoch = 3.0
```

```
test_loss = 0.011871221475303173
test_accuracy_score = 0.9969460436964865
test_precision = 0.9449558173784978
test_recall = 0.9644870349492672
test_f1 = 0.9546215361725869
test_runtime = 111.5143
test_samples_per_second = 59.849
test_steps_per_second = 3.748
```

### Usage
to do

### Reference
```
@misc{https://doi.org/10.48550/arxiv.2003.13016,
  doi = {10.48550/ARXIV.2003.13016},
  url = {https://arxiv.org/abs/2003.13016},  
  author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},  
  keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},  
  title = {A Dataset of German Legal Documents for Named Entity Recognition},  
  publisher = {arXiv},  
  year = {2020},  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

```