File size: 2,388 Bytes
2035f6d eac884b 2035f6d eac884b 107a4a2 eac884b 107a4a2 eac884b 8d94ca4 107a4a2 8d94ca4 2035f6d eac884b 8d94ca4 eac884b 8d94ca4 eac884b 8d94ca4 eac884b 8d94ca4 eac884b 8d94ca4 eac884b 8d94ca4 eac884b 8d94ca4 eac884b 5ecfef0 eac884b 5ecfef0 eac884b 5ecfef0 eac884b 5ecfef0 eac884b 8d94ca4 eac884b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language: de
license: cc-by-4.0
tags:
- named-entity-recognition
- legal
- ner
datasets:
- elenanereiss/german-ler
metrics:
- precision
- recall
- f1
model-index:
- name: elenanereiss/bert-german-ler
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: elenanereiss/german-ler
type: elenanereiss/german-ler
args: elenanereiss/german-ler
metrics:
- name: F1
type: f1
value: 0.9546215361725869
- name: Precision
type: precision
value: 0.9449558173784978
- name: Recall
type: recall
value: 0.9644870349492672
pipeline_tag: token-classification
widget:
- text: "Herr W. verstieß gegen § 36 Abs. 7 IfSG."
---
# bert-german-ler
## Model description
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the
[German LER Dataset](https://huggingface.co/datasets/elenanereiss/german-ler).
## Intended uses & limitations
to do
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 16
- max_seq_length: 512
- num_epochs: 3
## Results
```
eval_loss = 0.020239440724253654
eval_accuracy_score = 0.9953227664227791
eval_precision = 0.9212203128016991
eval_recall = 0.9458762886597938
eval_f1 = 0.9333855032769246
eval_runtime = 111.4147
eval_samples_per_second = 59.875
eval_steps_per_second = 3.743
epoch = 3.0
```
```
test_loss = 0.011871221475303173
test_accuracy_score = 0.9969460436964865
test_precision = 0.9449558173784978
test_recall = 0.9644870349492672
test_f1 = 0.9546215361725869
test_runtime = 111.5143
test_samples_per_second = 59.849
test_steps_per_second = 3.748
```
### Usage
to do
### Reference
```
@misc{https://doi.org/10.48550/arxiv.2003.13016,
doi = {10.48550/ARXIV.2003.13016},
url = {https://arxiv.org/abs/2003.13016},
author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {A Dataset of German Legal Documents for Named Entity Recognition},
publisher = {arXiv},
year = {2020},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
|