File size: 1,589 Bytes
c84c201 4d837bc c84c201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- louisbrulenaudet/Pearl-7B-slerp
- mlabonne/NeuralBeagle14-7B
base_model:
- louisbrulenaudet/Pearl-7B-slerp
- mlabonne/NeuralBeagle14-7B
---
# NeuralPearlBeagle
NeuralPearlBeagle is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [louisbrulenaudet/Pearl-7B-slerp](https://huggingface.co/louisbrulenaudet/Pearl-7B-slerp)
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
## 🧩 Configuration
```yaml
models:
- model: louisbrulenaudet/Pearl-7B-slerp
parameters:
density: 0.6
weight: 0.5
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.8
weight: 0.8
merge_method: ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
normalize: true
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "eldogbbhed/NeuralPearlBeagle"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |