|
--- |
|
license: mit |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
- ru |
|
- code |
|
base_model: |
|
- Qwen/Qwen2.5-7B-Instruct |
|
tags: |
|
- qwen2.5 |
|
--- |
|
|
|
### theqwenmoe |
|
- 18.3B parametrs |
|
- English & Russian |
|
- Math & Logic |
|
- Code: Python, Javascript, Java, PHP, C++, C#, ... |
|
|
|
This is experimental model. Can be bugs and various problems. |
|
|
|
Made with mergekit and unsloth apps by ehristoforu. |
|
|
|
Code usage example: |
|
```py |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "ehristoforu/theqwenmoe" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |