File size: 117,174 Bytes
0163a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
## Calculation method

- [normal](#normal)
- [cosineA/cosineB](#cosine)
- [trainDifference](#train)
- [smoothAdd](#smooth)
- [extract](#extract)
- [tensor](#tensor)

## normal
### _Available modes :_ All
Normal calculation method. Can be used in all modes.

## <a id="cosine">cosineA/cosineB</a>
### _Available modes :_ weight sum
The comparison of two models is performed using cosine similarity, centered on the set ratio, and is calculated to eliminate loss due to merging. See below for further details.
https://github.com/hako-mikan/sd-webui-supermerger/issues/33 https://github.com/recoilme/losslessmix

The original simple weight mode is the most basic method and works by linearly interpolating between the two models based on a given weight alpha. At alpha = 0, the output is the first model (model A), and at alpha = 1, the output is the second model (model B). Any other value of alpha results in a weighted average of the two models.
- Original merge results between AnythingV3 and FeverDream model  
`charming girl mid-shot. scenery-beautiful majestic`
![MergeStandard](https://user-images.githubusercontent.com/6239068/232734670-958a6db3-1022-49ed-af73-f777223e71e6.png)

One key advantage of the cosine methods over the original simple weight mode is that they take into account the structural similarity between the two models, which can lead to better results when the two models are similar but not identical. Another advantage of the cosine methods is that they can help prevent overfitting and improve generalization by limiting the amount of detail from one model that is incorporated into the other.

**In the case of CosineA**, we normalize the vectors of the first model (model A) before merging, so the resulting merged model will favor the structure of the first model while incorporating details from the second model. This is because we are essentially aligning the direction of the first model's vectors with the direction of the corresponding vectors in the second model.
- CosineA merge results between AnythingV3 and FeverDream model
_Note structure-wise the pose direction/flow and face area_
![MergeCosineA](https://user-images.githubusercontent.com/6239068/232741979-f40450ab-6006-47e5-ae00-cf5e89b7ac09.png)


_Detail-wise for example note how above and below, in all cases there's more blur preserved for the background compared to foreground, instead of the linear difference in the original merge._

**On the other hand, in CosineB**, we normalize the vectors of the second model (model B) before merging, so the resulting merged model will favor the structure of the second model while incorporating details from the first model. This is because we are aligning the direction of the second model's vectors with the direction of the corresponding vectors in the first model.
- CosineB merge results between AnythingV3 and FeverDream model
_Note structure-wise the pose direction/flow and face area, and how in the background it tried to keep the form more from the right too_
![MergeCosineB](https://user-images.githubusercontent.com/6239068/232744751-20786eff-a654-468c-93e7-c19db5829c69.png)

**In summary, the choice between CosineA and CosineB depends on which model's structure you want to prioritize in the resulting merged model. If you want to prioritize the structure of the first model, use CosineA. If you want to prioritize the structure of the second model, use CosineB.**

Note also how the second model is more the 'reference point' for the merging looking at Alpha 1 compared to the changes at 0, so the order of models can also change the end result to look for your desired output.
- CosineA merge results between FeverDream and AnythingV3 model
![MergeOppositeCosineA](https://user-images.githubusercontent.com/6239068/232741034-ce3c9739-7f5a-4a7d-b979-fec4ac7d9b71.png)

## <a id="train">trainDifference</a>
### _Available modes :_ Add difference
This method at its simplest, can be thought of as a 'super Lora' for permanent merges,
it no longer adds the calculated difference between (B)-(C) models to model (A),
now it 'trains' that difference as if it was finetuning it relative to model (A).

### Comparisons
- **Regular addDifference vs trainDifference**
With [rev animated](https://civitai.com/models/7371/rev-animated) and [isometric-future](https://civitai.com/models/10063/isometric-future)  
*"IsometricFuture, garden, IsometricFuture"*  
**Generated with addDifference ('rev animated')+('isometric future'-'sdv1.5')**   
![IsometricA](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/bde0c09b-4cc4-447b-acf9-da175192b546)  
**Generated with trainDifference ('rev animated')+('isometric future'-'sdv1.5')**  
![IsometricB](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/afb053aa-2ace-4fe5-8b62-e7e29ae5edaf)  
With [rev animated](https://civitai.com/models/7371/rev-animated) and [anything v3](https://civitai.com/models/66?modelVersionId=75)  
*"man smiling"*
**Generated with 'rev animated'**  
![FaceA](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/796400d6-b740-466b-beae-0ffd70276850)  
**Generated with addDifference ('rev animated')+('anything v3'-'sdv1.4')**  
![FaceB](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/d44d9a08-427c-47c9-9cde-d2750e880a54)  
**Generated with trainDifference ('rev animated')+('anything v3'-'sdv1.4')**  
![FaceC](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/872259c4-af29-4624-ac65-a820d5edfd33)  
- **Lora vs trainDifference**
Lora's obviously aren't invalidated by this because of their utility, plug-and-play flexibility, etc.
However it's often discussed how some models 'don't work well' with Lora's, and you've got some models like 'AnyLoRA' which was developed for that user on civitai to train their Lora's with in relation to this. You can see how to take advantage of this and trainDifference [here](#LoramergingfortrainDifference).
Using [FeverDream](https://civitai.com/models/26396?modelVersionId=32375) (a model definitely further away from the 'compatibility' an anime Lora would require), and [Thicker Lines Anime Style LoRA Mix](https://civitai.com/models/13910?modelVersionId=16368) who provided both a Lora version and pre-merged with [Anything V4.5](https://huggingface.co/andite/anything-v4.0/blob/main/anything-v4.5-pruned.safetensors) version we'll use for this, a direct comparison between the Lora on 'FeverDream' vs trainDifference ('Feverdream')+('Thicker Lines'-'Anythingv4.5') can be seen.
We'll compare at 1/1.2/1.4/1.6 lora/merge strength, as it's easiest to see at the extremes how the Lora pulls apart compared to the train difference.
![CompareLora](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/6ad4c28f-c282-4005-8542-2cb697790b65)

### Usage guidance
#### Possibilities and general usage
<details>
  <summary> Expand a model with new concepts, or reinforce existing concepts (and quality output), instead of mixing</summary>

Sci-Fi Diffusion as an example https://civitai.com/models/4404?modelVersionId=4980 was trained on general sci-fi images.
You don't have to merge/mix into it anymore, you can use this to practically train Sci-Fi into your model by trainDifferencing it against SDv1.5, you aren't limited to generating an aproximated Lora difference for expansion.
Another example is you could cosime similarity merge [Analog Diffusion](https://civitai.com/models/1265/analog-diffusion) and [Timeless Diffusion](https://civitai.com/models/3557?modelVersionId=3936) that are similar in nature (and you wouldn't want to re-inforce the negative elements of the photographs too much) then trainDifference [Modelshoot Style](https://civitai.com/models/2147/modelshoot-style) ontop of that which focuses on medium body shots with a stronger photography foundation built by the previous merge.
The potential for models, being able to now in a sense 'continue training' with broad models like [Surreality](https://civitai.com/models/21666?modelVersionId=25854) and [seek.art MEGA](https://civitai.com/models/1315?modelVersionId=22808) that gratefully lifted their license restrictions with V2, is now much larger than when it was limited to mixing them into models (though of course the utility for styling with different weighting of ins/outs etc all still has its value, and everything depends on your goal).
Also models like [RPG](https://civitai.com/models/1116?modelVersionId=7133) with v5 sounding like it is being developed from SDv1.5 instead of a merge, with this can be trained into models without the heavy NSFW/female bias in many from F222/etc merges.
</details>
<details>
  <summary> Direction of trainDifference and style of the difference matters</summary>

It is harder for a model to learn to be realistic, than to be stylistic.
For example if building a model that intends to eventually be stylistic, consider having multiple model branches based on similar styles, to eventually trainDifference the stylistic branch onto the most realistic branch.
Generally you should merge anime/cartoon > stylish > realistic, if the styles differ.
</details>
<details>
  <summary> trainDifference is not always the best solution</summary>

Sometimes depending on the type/scope of the difference, cosine similarity merge can provide better results (if the differences aren't from SDv1.5 already, trainDifference both onto SDv1.5, and then cosine similiarity merge them from there before you trainDifference it back onto your working model).
Also, sometimes if the material is similar but large and varied, the best result can come from using trainDifference in both directions, and then weight-sum merge between those 2 to find the best result, like [waifu diffusion](https://huggingface.co/hakurei/waifu-diffusion-v1-3) and [Acertainty](https://huggingface.co/JosephusCheung/ACertainty).
</details>
<details>
  <summary> Gain the benefits of a trained model anywhere</summary>

Models like [knollingcase](https://civitai.com/models/1092?modelVersionId=1093) and [Bubble Toys](https://civitai.com/models/23945/bubble-toys-the-model) are cool, but their effort has been limited by the framework they were trained on. Now you can trainDifference them onto any of the newer models that people have developed.
Additionally some people that have made checkpoints instead of Lora's mentioned trying Lora first but without getting valuable results, with trainDifference their work can still be applied onto any model.
</details>

#### Limitations and what to avoid/problems and solutions
<details>
  <summary> Knowing and having access to the origin of the model pre-training is required</summary>

A lot of models have some mix of SDv1.4 now. This trainDifference merge is accurate enough that, if you were to try and for example train 'rev animated' onto 'Sci-fi Diffusion' with SDv1.5 as model (C), because 'rev animated's origin is an unknown ratio between SDv1.4 and SDv1.5 (and mix of individual in/out weights too), the merge would negatively affect the output (the 'training' would be offset/distorted), but you could trainDifference 'sci-fi Diffusion' onto 'rev animated' because it was trained on SDv1.5.
</details>
<details>
  <summary> After enough time / with similar materials, 'burning'/'over training' can eventually occur</summary>

You can 'pull back' the model at this point by cosine similarity merging it with SDv1.5, which helps ground it while keeping more qualities from the training.
</details>
<details>
  <summary> After enough merges, the 'clip/comprehension' can become heavy, negatively effecting simple prompts</summary>

For example complex prompts may still look good, but 'female portrait, blue eyes' could spill the 'blue' concept too much.
To help avoid this, as you make trainDifference merges or large scope, you can use [model toolkit](https://github.com/arenasys/stable-diffusion-webui-model-toolkit) to manipulate the clip.
Load the final model into that extension, and create 2 different models. 'clipA' importing the clip of your base model, 'clipB' importing the clip of what you trained into it, and use a regular weightsum merge to find the best output/comprehension between those 2 models, to soften out the clip as you expand your model.
Sometimes weightsum merging the final model with a version of it using the SDv1.5 clip can be better than mixing between clipA and clipB.
</details>

<a id="LoramergingfortrainDifference"></a>
#### Practical demonstration
- One of the simpler ways you can take advantage of this is for more natural/accurate Lora styling of a different model.
In this we'll use [BreakDomainAnime](https://civitai.com/models/72675/breakdomainanime) and [Mika Pikazo Style LoRA](https://civitai.com/models/8479/mika-pikazo-style-lora) that was trained on [AnyLora](https://civitai.com/models/23900?modelVersionId=28562)
*"1girl, smiling, scenic background BREAK [mika-pikazo]"*
**Generated with 'BreakDomainAnime'**  
![LoraDifferenceA](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/cbcbf1bf-c58b-4e70-b8af-1baf6d4102ce)  
**Generated with 'BreakDomainAnime' using 'Mika Pikazo Style LoRA' at 1 strength**  
![LoraDifferenceB](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/332a61f1-d1d1-4c84-9639-f56c94e556db)  
Now instead of having the Lora apply over 'BreakDomainAnime', we'll use trainDifference to get a better alignment.
Using the Lora tab of SuperMerger, Merge to Checkpoint 'Mika Pikazo Style LoRA' onto "anyloraCheckpoint_novaeFp16" (the checkpoint they describe as the one to use for training, so assumed to be what they use for their training) as "anyloraCheckpoint_mika_pikazo".
Then **trainDifference ('BreakDomainAnime')+('Desired Lora combination merged onto AnyLora, in this case anyloraCheckpoint_mika_pikazo'-'AnyLora') to generate**  
![LoraDifferenceC](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/50457b98-b2ad-4e28-a048-b023a86a2530)   
Another more immediately visible comparison between Lora/the above technique, for a trainDifference of a background Lora that was originally trained on an anime model moved to a realistic model.
*"An eco-friendly residential building covered in vertical gardens in an urban setting"*  
![LoraTraindifferenceBackgroundExamplepng](https://github.com/hako-mikan/sd-webui-supermerger/assets/6239068/c40c1833-f166-49b5-abfe-56a28780a736)  

## <a id="smooth">smoothAdd</a>
### _Available modes :_ Add difference
A method of add difference that mixes the benefits of Median and Gaussian filters, to add model differences in a smoother way trying to avoid the negative 'burning' effect that can be seen when adding too many models this way. This also achieves more than just simply adding the difference at a lower value.

- The starting point for reference
![Untitled-1](https://user-images.githubusercontent.com/6239068/232780130-19caa53a-a767-4ee1-80a7-dc37ad948322.png)
- Adding a collection of models on top of it, each with a value of 1
`The burn here is very obvious`
![Untitled-2](https://user-images.githubusercontent.com/6239068/232781113-3e2de251-711d-463a-82c9-a080be47e180.png)
- Adding a collection of models on top of it, each with a value of 0.5
`Still not an outcome I would accept, especially you can see with the bird`
![Untitled-3](https://user-images.githubusercontent.com/6239068/232785787-cfde6967-fc86-47e8-b208-3aa8f5f46c40.png)
<details>
  <summary> The functionality and result of just the Median filter</summary>
  
- Reduces noise in the difference by replacing each value with the median of the neighboring values.
- Preserves edges and structures in the difference, which is helpful when you want to transfer the learning related to object shapes and boundaries.
- Non-linear filtering, which means it can better preserve the important features in the difference while reducing noise.
![Untitled-5](https://user-images.githubusercontent.com/6239068/232785599-1e40ee9f-43de-4721-bb5f-0c21485fd8d3.png)
</details>
<details>
  <summary> The functionality and result of just the Gaussian filter</summary>
  
- Smooths the difference by applying a Gaussian kernel, which reduces high-frequency noise and retains the low-frequency components.
- The level of smoothing can be controlled by the sigma parameter, allowing you to experiment with different levels of smoothing.
- Linear filtering, which means it can better preserve the global structure in the difference while reducing noise.
![Untitled-4](https://user-images.githubusercontent.com/6239068/232785723-aecce7bb-1bc6-4731-a879-f8a7e4dc5a0c.png)
</details>

- The final result when instead using the combination of Median and Gaussian filters
_Note also compared with either the Median/Guassin filters individually how you can see the top left of the mans hair in the top right image doesn't get 'stuck' when combining them here, achieving the best result overall_
![Untitled-6](https://user-images.githubusercontent.com/6239068/232786207-f7f41c55-939e-46a1-ab24-2e6d885f65f9.png)
>**TIP**
>Sometimes you may want to use this smooth Add difference as an alternative to the regular, even without the risk of burning.
>In these cases you could increase the Alpha up to 2, as smooth Add at 1 is a lower impact change individually than regular Add, but this of course depends on your desired outcome.

## <a id="extract">Extracting (Dis)Similar Features from Differential Models</a>
### _Available modes :_ Add difference
This method is designed to extract **either similar or dissimilar features** from *two differential models* that are built upon a common base model.

### Using Three Full-Parameter Models
In this setup, we use a base model (**Model A**) along with two derived models (**Model B** and **Model C**), both developed from **Model A**. *The two differential models* in focus are "**Model B - Model A**" and "**Model C - Model A**". Both derivatives share **Model A** as their common ancestor, ideally the most recent one, to reduce false similarities.

### <a id="extractlora">Using Two LoRA Networks</a>
In this setup, we directly use *the two differential models*: **LoRA B** and **LoRA C**. Both models are assumed to be trained on a common base model, similar to **Model A** in the three-model setup. However, if **LoRA B** and **LoRA C** derive from different base models, the results may be unpredictable due to underlying model discrepancies.

### Key Parameters
- **alpha (*α*)**: Controls the focus of feature extraction between **Model (LoRA)B** (***α* = 0**) and **Model (LoRA)C** (***α* = 1**).
- **beta (*β*)**: Controls the nature of feature extraction, with ***β* = 0** for **similar features** and ***β* = 1** for **dissimilar features**.
- **gamma (*γ*)**: Adjusts the selectivity in identifying feature (dis)similarity. **High *γ* (e.g., *γ* = 10)** emphasizes recognizing *more similar* features as similar. Conversely, **low *γ* (e.g., *γ* = 0.1)** emphasizes recognizing *more dissimilar* features as dissimilar.
**gamma** can be set in the option items of model merging as option(gamma), and in the case of LoRA, it can be set as gamma(smooth).

### Usage Scenarios
- ***α* = 0, *β* = 0**: Extracts features in **Model B** that are similar to those in **Model C**.
- ***α* = 0, *β* = 0.5**: Represents a balanced extraction between similarity and dissimilarity for features from:
  - **Full-parameter models**: $\frac{\text{A} + \text{lerp}(\text{B}, \text{C}, \alpha)}{2}$
  - **LoRA networks**: $\frac{\text{lerp}(\text{B}, \text{C}, \alpha)}{2}$
- ***α* = 0, *β* = 1**: Extracts features in **Model B** that are dissimilar to those in **Model C**.
- ***α* = 1**: Reverses the focus between **Model B** and **Model C**.


## tensor
### Available modes : weight sum only
- This is an Elemental merge that goes beyond Elemental merging.
As you know, each elemental tensor determines the features of an image in U-NET, and in normal merging, the values of each tensor are multiplied by a ratio and added together as shown below (normal). In the tensor method, the tensors are combined by dividing them by the ratio as shown in the figure below (tensor).

![](https://github.com/hako-mikan/sd-webui-supermerger/blob/images/tensor.jpg)


The tensor size of each element is noted below.

```
model.diffusion_model.time_embed.0.weight torch.Size([1280, 320])
model.diffusion_model.time_embed.0.bias torch.Size([1280])
model.diffusion_model.time_embed.2.weight torch.Size([1280, 1280])
model.diffusion_model.time_embed.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.0.0.weight torch.Size([320, 4, 3, 3])
model.diffusion_model.input_blocks.0.0.bias torch.Size([320])
model.diffusion_model.input_blocks.1.0.in_layers.0.weight torch.Size([320])
model.diffusion_model.input_blocks.1.0.in_layers.0.bias torch.Size([320])
model.diffusion_model.input_blocks.1.0.in_layers.2.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.input_blocks.1.0.in_layers.2.bias torch.Size([320])
model.diffusion_model.input_blocks.1.0.emb_layers.1.weight torch.Size([320, 1280])
model.diffusion_model.input_blocks.1.0.emb_layers.1.bias torch.Size([320])
model.diffusion_model.input_blocks.1.0.out_layers.0.weight torch.Size([320])
model.diffusion_model.input_blocks.1.0.out_layers.0.bias torch.Size([320])
model.diffusion_model.input_blocks.1.0.out_layers.3.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.input_blocks.1.0.out_layers.3.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.norm.weight torch.Size([320])
model.diffusion_model.input_blocks.1.1.norm.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.proj_in.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.input_blocks.1.1.proj_in.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([2560, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([2560])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight torch.Size([320, 1280])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight torch.Size([320, 768])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight torch.Size([320, 768])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight torch.Size([320])
model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias torch.Size([320])
model.diffusion_model.input_blocks.1.1.proj_out.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.input_blocks.1.1.proj_out.bias torch.Size([320])
model.diffusion_model.input_blocks.2.0.in_layers.0.weight torch.Size([320])
model.diffusion_model.input_blocks.2.0.in_layers.0.bias torch.Size([320])
model.diffusion_model.input_blocks.2.0.in_layers.2.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.input_blocks.2.0.in_layers.2.bias torch.Size([320])
model.diffusion_model.input_blocks.2.0.emb_layers.1.weight torch.Size([320, 1280])
model.diffusion_model.input_blocks.2.0.emb_layers.1.bias torch.Size([320])
model.diffusion_model.input_blocks.2.0.out_layers.0.weight torch.Size([320])
model.diffusion_model.input_blocks.2.0.out_layers.0.bias torch.Size([320])
model.diffusion_model.input_blocks.2.0.out_layers.3.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.input_blocks.2.0.out_layers.3.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.norm.weight torch.Size([320])
model.diffusion_model.input_blocks.2.1.norm.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.proj_in.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.input_blocks.2.1.proj_in.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([2560, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([2560])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight torch.Size([320, 1280])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight torch.Size([320, 768])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight torch.Size([320, 768])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight torch.Size([320])
model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias torch.Size([320])
model.diffusion_model.input_blocks.2.1.proj_out.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.input_blocks.2.1.proj_out.bias torch.Size([320])
model.diffusion_model.input_blocks.3.0.op.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.input_blocks.3.0.op.bias torch.Size([320])
model.diffusion_model.input_blocks.4.0.in_layers.0.weight torch.Size([320])
model.diffusion_model.input_blocks.4.0.in_layers.0.bias torch.Size([320])
model.diffusion_model.input_blocks.4.0.in_layers.2.weight torch.Size([640, 320, 3, 3])
model.diffusion_model.input_blocks.4.0.in_layers.2.bias torch.Size([640])
model.diffusion_model.input_blocks.4.0.emb_layers.1.weight torch.Size([640, 1280])
model.diffusion_model.input_blocks.4.0.emb_layers.1.bias torch.Size([640])
model.diffusion_model.input_blocks.4.0.out_layers.0.weight torch.Size([640])
model.diffusion_model.input_blocks.4.0.out_layers.0.bias torch.Size([640])
model.diffusion_model.input_blocks.4.0.out_layers.3.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.input_blocks.4.0.out_layers.3.bias torch.Size([640])
model.diffusion_model.input_blocks.4.0.skip_connection.weight torch.Size([640, 320, 1, 1])
model.diffusion_model.input_blocks.4.0.skip_connection.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.norm.weight torch.Size([640])
model.diffusion_model.input_blocks.4.1.norm.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.proj_in.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.input_blocks.4.1.proj_in.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([5120, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([5120])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight torch.Size([640, 2560])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight torch.Size([640, 768])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight torch.Size([640, 768])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight torch.Size([640])
model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias torch.Size([640])
model.diffusion_model.input_blocks.4.1.proj_out.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.input_blocks.4.1.proj_out.bias torch.Size([640])
model.diffusion_model.input_blocks.5.0.in_layers.0.weight torch.Size([640])
model.diffusion_model.input_blocks.5.0.in_layers.0.bias torch.Size([640])
model.diffusion_model.input_blocks.5.0.in_layers.2.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.input_blocks.5.0.in_layers.2.bias torch.Size([640])
model.diffusion_model.input_blocks.5.0.emb_layers.1.weight torch.Size([640, 1280])
model.diffusion_model.input_blocks.5.0.emb_layers.1.bias torch.Size([640])
model.diffusion_model.input_blocks.5.0.out_layers.0.weight torch.Size([640])
model.diffusion_model.input_blocks.5.0.out_layers.0.bias torch.Size([640])
model.diffusion_model.input_blocks.5.0.out_layers.3.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.input_blocks.5.0.out_layers.3.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.norm.weight torch.Size([640])
model.diffusion_model.input_blocks.5.1.norm.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.proj_in.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.input_blocks.5.1.proj_in.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([5120, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([5120])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight torch.Size([640, 2560])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight torch.Size([640, 768])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight torch.Size([640, 768])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight torch.Size([640])
model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias torch.Size([640])
model.diffusion_model.input_blocks.5.1.proj_out.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.input_blocks.5.1.proj_out.bias torch.Size([640])
model.diffusion_model.input_blocks.6.0.op.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.input_blocks.6.0.op.bias torch.Size([640])
model.diffusion_model.input_blocks.7.0.in_layers.0.weight torch.Size([640])
model.diffusion_model.input_blocks.7.0.in_layers.0.bias torch.Size([640])
model.diffusion_model.input_blocks.7.0.in_layers.2.weight torch.Size([1280, 640, 3, 3])
model.diffusion_model.input_blocks.7.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.7.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.7.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.0.skip_connection.weight torch.Size([1280, 640, 1, 1])
model.diffusion_model.input_blocks.7.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.norm.weight torch.Size([1280])
model.diffusion_model.input_blocks.7.1.norm.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.input_blocks.7.1.proj_in.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.input_blocks.7.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.input_blocks.7.1.proj_out.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.0.in_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.0.in_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.0.in_layers.2.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.8.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.8.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.norm.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.1.norm.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.input_blocks.8.1.proj_in.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.input_blocks.8.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.input_blocks.8.1.proj_out.bias torch.Size([1280])
model.diffusion_model.input_blocks.9.0.op.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.9.0.op.bias torch.Size([1280])
model.diffusion_model.input_blocks.10.0.in_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.10.0.in_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.10.0.in_layers.2.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.10.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.10.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.10.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.input_blocks.10.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.10.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.10.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.10.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.input_blocks.11.0.in_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.11.0.in_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.11.0.in_layers.2.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.11.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.input_blocks.11.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.input_blocks.11.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.input_blocks.11.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.input_blocks.11.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.input_blocks.11.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.input_blocks.11.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.middle_block.0.in_layers.0.weight torch.Size([1280])
model.diffusion_model.middle_block.0.in_layers.0.bias torch.Size([1280])
model.diffusion_model.middle_block.0.in_layers.2.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.middle_block.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.middle_block.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.middle_block.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.middle_block.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.middle_block.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.middle_block.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.middle_block.1.norm.weight torch.Size([1280])
model.diffusion_model.middle_block.1.norm.bias torch.Size([1280])
model.diffusion_model.middle_block.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.middle_block.1.proj_in.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.middle_block.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.middle_block.1.proj_out.bias torch.Size([1280])
model.diffusion_model.middle_block.2.in_layers.0.weight torch.Size([1280])
model.diffusion_model.middle_block.2.in_layers.0.bias torch.Size([1280])
model.diffusion_model.middle_block.2.in_layers.2.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.middle_block.2.in_layers.2.bias torch.Size([1280])
model.diffusion_model.middle_block.2.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.middle_block.2.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.middle_block.2.out_layers.0.weight torch.Size([1280])
model.diffusion_model.middle_block.2.out_layers.0.bias torch.Size([1280])
model.diffusion_model.middle_block.2.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.middle_block.2.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.0.0.in_layers.0.weight torch.Size([2560])
model.diffusion_model.output_blocks.0.0.in_layers.0.bias torch.Size([2560])
model.diffusion_model.output_blocks.0.0.in_layers.2.weight torch.Size([1280, 2560, 3, 3])
model.diffusion_model.output_blocks.0.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.0.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.0.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.0.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.0.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.0.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.0.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.0.0.skip_connection.weight torch.Size([1280, 2560, 1, 1])
model.diffusion_model.output_blocks.0.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.1.0.in_layers.0.weight torch.Size([2560])
model.diffusion_model.output_blocks.1.0.in_layers.0.bias torch.Size([2560])
model.diffusion_model.output_blocks.1.0.in_layers.2.weight torch.Size([1280, 2560, 3, 3])
model.diffusion_model.output_blocks.1.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.1.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.1.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.1.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.1.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.1.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.1.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.1.0.skip_connection.weight torch.Size([1280, 2560, 1, 1])
model.diffusion_model.output_blocks.1.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.0.in_layers.0.weight torch.Size([2560])
model.diffusion_model.output_blocks.2.0.in_layers.0.bias torch.Size([2560])
model.diffusion_model.output_blocks.2.0.in_layers.2.weight torch.Size([1280, 2560, 3, 3])
model.diffusion_model.output_blocks.2.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.2.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.2.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.2.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.0.skip_connection.weight torch.Size([1280, 2560, 1, 1])
model.diffusion_model.output_blocks.2.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.2.1.conv.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.2.1.conv.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.0.in_layers.0.weight torch.Size([2560])
model.diffusion_model.output_blocks.3.0.in_layers.0.bias torch.Size([2560])
model.diffusion_model.output_blocks.3.0.in_layers.2.weight torch.Size([1280, 2560, 3, 3])
model.diffusion_model.output_blocks.3.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.3.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.3.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.0.skip_connection.weight torch.Size([1280, 2560, 1, 1])
model.diffusion_model.output_blocks.3.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.norm.weight torch.Size([1280])
model.diffusion_model.output_blocks.3.1.norm.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.3.1.proj_in.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.output_blocks.3.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.3.1.proj_out.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.0.in_layers.0.weight torch.Size([2560])
model.diffusion_model.output_blocks.4.0.in_layers.0.bias torch.Size([2560])
model.diffusion_model.output_blocks.4.0.in_layers.2.weight torch.Size([1280, 2560, 3, 3])
model.diffusion_model.output_blocks.4.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.4.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.4.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.0.skip_connection.weight torch.Size([1280, 2560, 1, 1])
model.diffusion_model.output_blocks.4.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.norm.weight torch.Size([1280])
model.diffusion_model.output_blocks.4.1.norm.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.4.1.proj_in.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.output_blocks.4.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.4.1.proj_out.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.0.in_layers.0.weight torch.Size([1920])
model.diffusion_model.output_blocks.5.0.in_layers.0.bias torch.Size([1920])
model.diffusion_model.output_blocks.5.0.in_layers.2.weight torch.Size([1280, 1920, 3, 3])
model.diffusion_model.output_blocks.5.0.in_layers.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.0.emb_layers.1.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.0.emb_layers.1.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.0.out_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.5.0.out_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.0.out_layers.3.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.5.0.out_layers.3.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.0.skip_connection.weight torch.Size([1280, 1920, 1, 1])
model.diffusion_model.output_blocks.5.0.skip_connection.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.norm.weight torch.Size([1280])
model.diffusion_model.output_blocks.5.1.norm.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.proj_in.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.5.1.proj_in.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([10240, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([10240])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight torch.Size([1280, 5120])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight torch.Size([1280, 768])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([1280, 1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight torch.Size([1280])
model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.1.proj_out.weight torch.Size([1280, 1280, 1, 1])
model.diffusion_model.output_blocks.5.1.proj_out.bias torch.Size([1280])
model.diffusion_model.output_blocks.5.2.conv.weight torch.Size([1280, 1280, 3, 3])
model.diffusion_model.output_blocks.5.2.conv.bias torch.Size([1280])
model.diffusion_model.output_blocks.6.0.in_layers.0.weight torch.Size([1920])
model.diffusion_model.output_blocks.6.0.in_layers.0.bias torch.Size([1920])
model.diffusion_model.output_blocks.6.0.in_layers.2.weight torch.Size([640, 1920, 3, 3])
model.diffusion_model.output_blocks.6.0.in_layers.2.bias torch.Size([640])
model.diffusion_model.output_blocks.6.0.emb_layers.1.weight torch.Size([640, 1280])
model.diffusion_model.output_blocks.6.0.emb_layers.1.bias torch.Size([640])
model.diffusion_model.output_blocks.6.0.out_layers.0.weight torch.Size([640])
model.diffusion_model.output_blocks.6.0.out_layers.0.bias torch.Size([640])
model.diffusion_model.output_blocks.6.0.out_layers.3.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.output_blocks.6.0.out_layers.3.bias torch.Size([640])
model.diffusion_model.output_blocks.6.0.skip_connection.weight torch.Size([640, 1920, 1, 1])
model.diffusion_model.output_blocks.6.0.skip_connection.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.norm.weight torch.Size([640])
model.diffusion_model.output_blocks.6.1.norm.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.proj_in.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.6.1.proj_in.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([5120, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([5120])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight torch.Size([640, 2560])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight torch.Size([640])
model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias torch.Size([640])
model.diffusion_model.output_blocks.6.1.proj_out.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.6.1.proj_out.bias torch.Size([640])
model.diffusion_model.output_blocks.7.0.in_layers.0.weight torch.Size([1280])
model.diffusion_model.output_blocks.7.0.in_layers.0.bias torch.Size([1280])
model.diffusion_model.output_blocks.7.0.in_layers.2.weight torch.Size([640, 1280, 3, 3])
model.diffusion_model.output_blocks.7.0.in_layers.2.bias torch.Size([640])
model.diffusion_model.output_blocks.7.0.emb_layers.1.weight torch.Size([640, 1280])
model.diffusion_model.output_blocks.7.0.emb_layers.1.bias torch.Size([640])
model.diffusion_model.output_blocks.7.0.out_layers.0.weight torch.Size([640])
model.diffusion_model.output_blocks.7.0.out_layers.0.bias torch.Size([640])
model.diffusion_model.output_blocks.7.0.out_layers.3.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.output_blocks.7.0.out_layers.3.bias torch.Size([640])
model.diffusion_model.output_blocks.7.0.skip_connection.weight torch.Size([640, 1280, 1, 1])
model.diffusion_model.output_blocks.7.0.skip_connection.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.norm.weight torch.Size([640])
model.diffusion_model.output_blocks.7.1.norm.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.proj_in.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.7.1.proj_in.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([5120, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([5120])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight torch.Size([640, 2560])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight torch.Size([640])
model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias torch.Size([640])
model.diffusion_model.output_blocks.7.1.proj_out.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.7.1.proj_out.bias torch.Size([640])
model.diffusion_model.output_blocks.8.0.in_layers.0.weight torch.Size([960])
model.diffusion_model.output_blocks.8.0.in_layers.0.bias torch.Size([960])
model.diffusion_model.output_blocks.8.0.in_layers.2.weight torch.Size([640, 960, 3, 3])
model.diffusion_model.output_blocks.8.0.in_layers.2.bias torch.Size([640])
model.diffusion_model.output_blocks.8.0.emb_layers.1.weight torch.Size([640, 1280])
model.diffusion_model.output_blocks.8.0.emb_layers.1.bias torch.Size([640])
model.diffusion_model.output_blocks.8.0.out_layers.0.weight torch.Size([640])
model.diffusion_model.output_blocks.8.0.out_layers.0.bias torch.Size([640])
model.diffusion_model.output_blocks.8.0.out_layers.3.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.output_blocks.8.0.out_layers.3.bias torch.Size([640])
model.diffusion_model.output_blocks.8.0.skip_connection.weight torch.Size([640, 960, 1, 1])
model.diffusion_model.output_blocks.8.0.skip_connection.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.norm.weight torch.Size([640])
model.diffusion_model.output_blocks.8.1.norm.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.proj_in.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.8.1.proj_in.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([5120, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([5120])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight torch.Size([640, 2560])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight torch.Size([640, 768])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([640, 640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight torch.Size([640])
model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias torch.Size([640])
model.diffusion_model.output_blocks.8.1.proj_out.weight torch.Size([640, 640, 1, 1])
model.diffusion_model.output_blocks.8.1.proj_out.bias torch.Size([640])
model.diffusion_model.output_blocks.8.2.conv.weight torch.Size([640, 640, 3, 3])
model.diffusion_model.output_blocks.8.2.conv.bias torch.Size([640])
model.diffusion_model.output_blocks.9.0.in_layers.0.weight torch.Size([960])
model.diffusion_model.output_blocks.9.0.in_layers.0.bias torch.Size([960])
model.diffusion_model.output_blocks.9.0.in_layers.2.weight torch.Size([320, 960, 3, 3])
model.diffusion_model.output_blocks.9.0.in_layers.2.bias torch.Size([320])
model.diffusion_model.output_blocks.9.0.emb_layers.1.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.9.0.emb_layers.1.bias torch.Size([320])
model.diffusion_model.output_blocks.9.0.out_layers.0.weight torch.Size([320])
model.diffusion_model.output_blocks.9.0.out_layers.0.bias torch.Size([320])
model.diffusion_model.output_blocks.9.0.out_layers.3.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.output_blocks.9.0.out_layers.3.bias torch.Size([320])
model.diffusion_model.output_blocks.9.0.skip_connection.weight torch.Size([320, 960, 1, 1])
model.diffusion_model.output_blocks.9.0.skip_connection.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.norm.weight torch.Size([320])
model.diffusion_model.output_blocks.9.1.norm.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.proj_in.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.9.1.proj_in.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([2560, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([2560])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight torch.Size([320])
model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias torch.Size([320])
model.diffusion_model.output_blocks.9.1.proj_out.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.9.1.proj_out.bias torch.Size([320])
model.diffusion_model.output_blocks.10.0.in_layers.0.weight torch.Size([640])
model.diffusion_model.output_blocks.10.0.in_layers.0.bias torch.Size([640])
model.diffusion_model.output_blocks.10.0.in_layers.2.weight torch.Size([320, 640, 3, 3])
model.diffusion_model.output_blocks.10.0.in_layers.2.bias torch.Size([320])
model.diffusion_model.output_blocks.10.0.emb_layers.1.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.10.0.emb_layers.1.bias torch.Size([320])
model.diffusion_model.output_blocks.10.0.out_layers.0.weight torch.Size([320])
model.diffusion_model.output_blocks.10.0.out_layers.0.bias torch.Size([320])
model.diffusion_model.output_blocks.10.0.out_layers.3.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.output_blocks.10.0.out_layers.3.bias torch.Size([320])
model.diffusion_model.output_blocks.10.0.skip_connection.weight torch.Size([320, 640, 1, 1])
model.diffusion_model.output_blocks.10.0.skip_connection.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.norm.weight torch.Size([320])
model.diffusion_model.output_blocks.10.1.norm.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.proj_in.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.10.1.proj_in.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([2560, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([2560])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight torch.Size([320])
model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias torch.Size([320])
model.diffusion_model.output_blocks.10.1.proj_out.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.10.1.proj_out.bias torch.Size([320])
model.diffusion_model.output_blocks.11.0.in_layers.0.weight torch.Size([640])
model.diffusion_model.output_blocks.11.0.in_layers.0.bias torch.Size([640])
model.diffusion_model.output_blocks.11.0.in_layers.2.weight torch.Size([320, 640, 3, 3])
model.diffusion_model.output_blocks.11.0.in_layers.2.bias torch.Size([320])
model.diffusion_model.output_blocks.11.0.emb_layers.1.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.11.0.emb_layers.1.bias torch.Size([320])
model.diffusion_model.output_blocks.11.0.out_layers.0.weight torch.Size([320])
model.diffusion_model.output_blocks.11.0.out_layers.0.bias torch.Size([320])
model.diffusion_model.output_blocks.11.0.out_layers.3.weight torch.Size([320, 320, 3, 3])
model.diffusion_model.output_blocks.11.0.out_layers.3.bias torch.Size([320])
model.diffusion_model.output_blocks.11.0.skip_connection.weight torch.Size([320, 640, 1, 1])
model.diffusion_model.output_blocks.11.0.skip_connection.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.norm.weight torch.Size([320])
model.diffusion_model.output_blocks.11.1.norm.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.proj_in.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.11.1.proj_in.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight torch.Size([2560, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias torch.Size([2560])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight torch.Size([320, 1280])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight torch.Size([320, 768])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight torch.Size([320, 320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight torch.Size([320])
model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias torch.Size([320])
model.diffusion_model.output_blocks.11.1.proj_out.weight torch.Size([320, 320, 1, 1])
model.diffusion_model.output_blocks.11.1.proj_out.bias torch.Size([320])
model.diffusion_model.out.0.weight torch.Size([320])
model.diffusion_model.out.0.bias torch.Size([320])
model.diffusion_model.out.2.weight torch.Size([4, 320, 3, 3])
model.diffusion_model.out.2.bias torch.Size([4])
first_stage_model.encoder.conv_in.weight torch.Size([128, 3, 3, 3])
first_stage_model.encoder.conv_in.bias torch.Size([128])
first_stage_model.encoder.down.0.block.0.norm1.weight torch.Size([128])
first_stage_model.encoder.down.0.block.0.norm1.bias torch.Size([128])
first_stage_model.encoder.down.0.block.0.conv1.weight torch.Size([128, 128, 3, 3])
first_stage_model.encoder.down.0.block.0.conv1.bias torch.Size([128])
first_stage_model.encoder.down.0.block.0.norm2.weight torch.Size([128])
first_stage_model.encoder.down.0.block.0.norm2.bias torch.Size([128])
first_stage_model.encoder.down.0.block.0.conv2.weight torch.Size([128, 128, 3, 3])
first_stage_model.encoder.down.0.block.0.conv2.bias torch.Size([128])
first_stage_model.encoder.down.0.block.1.norm1.weight torch.Size([128])
first_stage_model.encoder.down.0.block.1.norm1.bias torch.Size([128])
first_stage_model.encoder.down.0.block.1.conv1.weight torch.Size([128, 128, 3, 3])
first_stage_model.encoder.down.0.block.1.conv1.bias torch.Size([128])
first_stage_model.encoder.down.0.block.1.norm2.weight torch.Size([128])
first_stage_model.encoder.down.0.block.1.norm2.bias torch.Size([128])
first_stage_model.encoder.down.0.block.1.conv2.weight torch.Size([128, 128, 3, 3])
first_stage_model.encoder.down.0.block.1.conv2.bias torch.Size([128])
first_stage_model.encoder.down.0.downsample.conv.weight torch.Size([128, 128, 3, 3])
first_stage_model.encoder.down.0.downsample.conv.bias torch.Size([128])
first_stage_model.encoder.down.1.block.0.norm1.weight torch.Size([128])
first_stage_model.encoder.down.1.block.0.norm1.bias torch.Size([128])
first_stage_model.encoder.down.1.block.0.conv1.weight torch.Size([256, 128, 3, 3])
first_stage_model.encoder.down.1.block.0.conv1.bias torch.Size([256])
first_stage_model.encoder.down.1.block.0.norm2.weight torch.Size([256])
first_stage_model.encoder.down.1.block.0.norm2.bias torch.Size([256])
first_stage_model.encoder.down.1.block.0.conv2.weight torch.Size([256, 256, 3, 3])
first_stage_model.encoder.down.1.block.0.conv2.bias torch.Size([256])
first_stage_model.encoder.down.1.block.0.nin_shortcut.weight torch.Size([256, 128, 1, 1])
first_stage_model.encoder.down.1.block.0.nin_shortcut.bias torch.Size([256])
first_stage_model.encoder.down.1.block.1.norm1.weight torch.Size([256])
first_stage_model.encoder.down.1.block.1.norm1.bias torch.Size([256])
first_stage_model.encoder.down.1.block.1.conv1.weight torch.Size([256, 256, 3, 3])
first_stage_model.encoder.down.1.block.1.conv1.bias torch.Size([256])
first_stage_model.encoder.down.1.block.1.norm2.weight torch.Size([256])
first_stage_model.encoder.down.1.block.1.norm2.bias torch.Size([256])
first_stage_model.encoder.down.1.block.1.conv2.weight torch.Size([256, 256, 3, 3])
first_stage_model.encoder.down.1.block.1.conv2.bias torch.Size([256])
first_stage_model.encoder.down.1.downsample.conv.weight torch.Size([256, 256, 3, 3])
first_stage_model.encoder.down.1.downsample.conv.bias torch.Size([256])
first_stage_model.encoder.down.2.block.0.norm1.weight torch.Size([256])
first_stage_model.encoder.down.2.block.0.norm1.bias torch.Size([256])
first_stage_model.encoder.down.2.block.0.conv1.weight torch.Size([512, 256, 3, 3])
first_stage_model.encoder.down.2.block.0.conv1.bias torch.Size([512])
first_stage_model.encoder.down.2.block.0.norm2.weight torch.Size([512])
first_stage_model.encoder.down.2.block.0.norm2.bias torch.Size([512])
first_stage_model.encoder.down.2.block.0.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.2.block.0.conv2.bias torch.Size([512])
first_stage_model.encoder.down.2.block.0.nin_shortcut.weight torch.Size([512, 256, 1, 1])
first_stage_model.encoder.down.2.block.0.nin_shortcut.bias torch.Size([512])
first_stage_model.encoder.down.2.block.1.norm1.weight torch.Size([512])
first_stage_model.encoder.down.2.block.1.norm1.bias torch.Size([512])
first_stage_model.encoder.down.2.block.1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.2.block.1.conv1.bias torch.Size([512])
first_stage_model.encoder.down.2.block.1.norm2.weight torch.Size([512])
first_stage_model.encoder.down.2.block.1.norm2.bias torch.Size([512])
first_stage_model.encoder.down.2.block.1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.2.block.1.conv2.bias torch.Size([512])
first_stage_model.encoder.down.2.downsample.conv.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.2.downsample.conv.bias torch.Size([512])
first_stage_model.encoder.down.3.block.0.norm1.weight torch.Size([512])
first_stage_model.encoder.down.3.block.0.norm1.bias torch.Size([512])
first_stage_model.encoder.down.3.block.0.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.3.block.0.conv1.bias torch.Size([512])
first_stage_model.encoder.down.3.block.0.norm2.weight torch.Size([512])
first_stage_model.encoder.down.3.block.0.norm2.bias torch.Size([512])
first_stage_model.encoder.down.3.block.0.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.3.block.0.conv2.bias torch.Size([512])
first_stage_model.encoder.down.3.block.1.norm1.weight torch.Size([512])
first_stage_model.encoder.down.3.block.1.norm1.bias torch.Size([512])
first_stage_model.encoder.down.3.block.1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.3.block.1.conv1.bias torch.Size([512])
first_stage_model.encoder.down.3.block.1.norm2.weight torch.Size([512])
first_stage_model.encoder.down.3.block.1.norm2.bias torch.Size([512])
first_stage_model.encoder.down.3.block.1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.down.3.block.1.conv2.bias torch.Size([512])
first_stage_model.encoder.mid.block_1.norm1.weight torch.Size([512])
first_stage_model.encoder.mid.block_1.norm1.bias torch.Size([512])
first_stage_model.encoder.mid.block_1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.mid.block_1.conv1.bias torch.Size([512])
first_stage_model.encoder.mid.block_1.norm2.weight torch.Size([512])
first_stage_model.encoder.mid.block_1.norm2.bias torch.Size([512])
first_stage_model.encoder.mid.block_1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.mid.block_1.conv2.bias torch.Size([512])
first_stage_model.encoder.mid.attn_1.norm.weight torch.Size([512])
first_stage_model.encoder.mid.attn_1.norm.bias torch.Size([512])
first_stage_model.encoder.mid.attn_1.q.weight torch.Size([512, 512, 1, 1])
first_stage_model.encoder.mid.attn_1.q.bias torch.Size([512])
first_stage_model.encoder.mid.attn_1.k.weight torch.Size([512, 512, 1, 1])
first_stage_model.encoder.mid.attn_1.k.bias torch.Size([512])
first_stage_model.encoder.mid.attn_1.v.weight torch.Size([512, 512, 1, 1])
first_stage_model.encoder.mid.attn_1.v.bias torch.Size([512])
first_stage_model.encoder.mid.attn_1.proj_out.weight torch.Size([512, 512, 1, 1])
first_stage_model.encoder.mid.attn_1.proj_out.bias torch.Size([512])
first_stage_model.encoder.mid.block_2.norm1.weight torch.Size([512])
first_stage_model.encoder.mid.block_2.norm1.bias torch.Size([512])
first_stage_model.encoder.mid.block_2.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.mid.block_2.conv1.bias torch.Size([512])
first_stage_model.encoder.mid.block_2.norm2.weight torch.Size([512])
first_stage_model.encoder.mid.block_2.norm2.bias torch.Size([512])
first_stage_model.encoder.mid.block_2.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.encoder.mid.block_2.conv2.bias torch.Size([512])
first_stage_model.encoder.norm_out.weight torch.Size([512])
first_stage_model.encoder.norm_out.bias torch.Size([512])
first_stage_model.encoder.conv_out.weight torch.Size([8, 512, 3, 3])
first_stage_model.encoder.conv_out.bias torch.Size([8])
first_stage_model.decoder.conv_in.weight torch.Size([512, 4, 3, 3])
first_stage_model.decoder.conv_in.bias torch.Size([512])
first_stage_model.decoder.mid.block_1.norm1.weight torch.Size([512])
first_stage_model.decoder.mid.block_1.norm1.bias torch.Size([512])
first_stage_model.decoder.mid.block_1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.mid.block_1.conv1.bias torch.Size([512])
first_stage_model.decoder.mid.block_1.norm2.weight torch.Size([512])
first_stage_model.decoder.mid.block_1.norm2.bias torch.Size([512])
first_stage_model.decoder.mid.block_1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.mid.block_1.conv2.bias torch.Size([512])
first_stage_model.decoder.mid.attn_1.norm.weight torch.Size([512])
first_stage_model.decoder.mid.attn_1.norm.bias torch.Size([512])
first_stage_model.decoder.mid.attn_1.q.weight torch.Size([512, 512, 1, 1])
first_stage_model.decoder.mid.attn_1.q.bias torch.Size([512])
first_stage_model.decoder.mid.attn_1.k.weight torch.Size([512, 512, 1, 1])
first_stage_model.decoder.mid.attn_1.k.bias torch.Size([512])
first_stage_model.decoder.mid.attn_1.v.weight torch.Size([512, 512, 1, 1])
first_stage_model.decoder.mid.attn_1.v.bias torch.Size([512])
first_stage_model.decoder.mid.attn_1.proj_out.weight torch.Size([512, 512, 1, 1])
first_stage_model.decoder.mid.attn_1.proj_out.bias torch.Size([512])
first_stage_model.decoder.mid.block_2.norm1.weight torch.Size([512])
first_stage_model.decoder.mid.block_2.norm1.bias torch.Size([512])
first_stage_model.decoder.mid.block_2.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.mid.block_2.conv1.bias torch.Size([512])
first_stage_model.decoder.mid.block_2.norm2.weight torch.Size([512])
first_stage_model.decoder.mid.block_2.norm2.bias torch.Size([512])
first_stage_model.decoder.mid.block_2.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.mid.block_2.conv2.bias torch.Size([512])
first_stage_model.decoder.up.0.block.0.norm1.weight torch.Size([256])
first_stage_model.decoder.up.0.block.0.norm1.bias torch.Size([256])
first_stage_model.decoder.up.0.block.0.conv1.weight torch.Size([128, 256, 3, 3])
first_stage_model.decoder.up.0.block.0.conv1.bias torch.Size([128])
first_stage_model.decoder.up.0.block.0.norm2.weight torch.Size([128])
first_stage_model.decoder.up.0.block.0.norm2.bias torch.Size([128])
first_stage_model.decoder.up.0.block.0.conv2.weight torch.Size([128, 128, 3, 3])
first_stage_model.decoder.up.0.block.0.conv2.bias torch.Size([128])
first_stage_model.decoder.up.0.block.0.nin_shortcut.weight torch.Size([128, 256, 1, 1])
first_stage_model.decoder.up.0.block.0.nin_shortcut.bias torch.Size([128])
first_stage_model.decoder.up.0.block.1.norm1.weight torch.Size([128])
first_stage_model.decoder.up.0.block.1.norm1.bias torch.Size([128])
first_stage_model.decoder.up.0.block.1.conv1.weight torch.Size([128, 128, 3, 3])
first_stage_model.decoder.up.0.block.1.conv1.bias torch.Size([128])
first_stage_model.decoder.up.0.block.1.norm2.weight torch.Size([128])
first_stage_model.decoder.up.0.block.1.norm2.bias torch.Size([128])
first_stage_model.decoder.up.0.block.1.conv2.weight torch.Size([128, 128, 3, 3])
first_stage_model.decoder.up.0.block.1.conv2.bias torch.Size([128])
first_stage_model.decoder.up.0.block.2.norm1.weight torch.Size([128])
first_stage_model.decoder.up.0.block.2.norm1.bias torch.Size([128])
first_stage_model.decoder.up.0.block.2.conv1.weight torch.Size([128, 128, 3, 3])
first_stage_model.decoder.up.0.block.2.conv1.bias torch.Size([128])
first_stage_model.decoder.up.0.block.2.norm2.weight torch.Size([128])
first_stage_model.decoder.up.0.block.2.norm2.bias torch.Size([128])
first_stage_model.decoder.up.0.block.2.conv2.weight torch.Size([128, 128, 3, 3])
first_stage_model.decoder.up.0.block.2.conv2.bias torch.Size([128])
first_stage_model.decoder.up.1.block.0.norm1.weight torch.Size([512])
first_stage_model.decoder.up.1.block.0.norm1.bias torch.Size([512])
first_stage_model.decoder.up.1.block.0.conv1.weight torch.Size([256, 512, 3, 3])
first_stage_model.decoder.up.1.block.0.conv1.bias torch.Size([256])
first_stage_model.decoder.up.1.block.0.norm2.weight torch.Size([256])
first_stage_model.decoder.up.1.block.0.norm2.bias torch.Size([256])
first_stage_model.decoder.up.1.block.0.conv2.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.block.0.conv2.bias torch.Size([256])
first_stage_model.decoder.up.1.block.0.nin_shortcut.weight torch.Size([256, 512, 1, 1])
first_stage_model.decoder.up.1.block.0.nin_shortcut.bias torch.Size([256])
first_stage_model.decoder.up.1.block.1.norm1.weight torch.Size([256])
first_stage_model.decoder.up.1.block.1.norm1.bias torch.Size([256])
first_stage_model.decoder.up.1.block.1.conv1.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.block.1.conv1.bias torch.Size([256])
first_stage_model.decoder.up.1.block.1.norm2.weight torch.Size([256])
first_stage_model.decoder.up.1.block.1.norm2.bias torch.Size([256])
first_stage_model.decoder.up.1.block.1.conv2.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.block.1.conv2.bias torch.Size([256])
first_stage_model.decoder.up.1.block.2.norm1.weight torch.Size([256])
first_stage_model.decoder.up.1.block.2.norm1.bias torch.Size([256])
first_stage_model.decoder.up.1.block.2.conv1.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.block.2.conv1.bias torch.Size([256])
first_stage_model.decoder.up.1.block.2.norm2.weight torch.Size([256])
first_stage_model.decoder.up.1.block.2.norm2.bias torch.Size([256])
first_stage_model.decoder.up.1.block.2.conv2.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.block.2.conv2.bias torch.Size([256])
first_stage_model.decoder.up.1.upsample.conv.weight torch.Size([256, 256, 3, 3])
first_stage_model.decoder.up.1.upsample.conv.bias torch.Size([256])
first_stage_model.decoder.up.2.block.0.norm1.weight torch.Size([512])
first_stage_model.decoder.up.2.block.0.norm1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.0.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.0.conv1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.0.norm2.weight torch.Size([512])
first_stage_model.decoder.up.2.block.0.norm2.bias torch.Size([512])
first_stage_model.decoder.up.2.block.0.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.0.conv2.bias torch.Size([512])
first_stage_model.decoder.up.2.block.1.norm1.weight torch.Size([512])
first_stage_model.decoder.up.2.block.1.norm1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.1.conv1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.1.norm2.weight torch.Size([512])
first_stage_model.decoder.up.2.block.1.norm2.bias torch.Size([512])
first_stage_model.decoder.up.2.block.1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.1.conv2.bias torch.Size([512])
first_stage_model.decoder.up.2.block.2.norm1.weight torch.Size([512])
first_stage_model.decoder.up.2.block.2.norm1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.2.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.2.conv1.bias torch.Size([512])
first_stage_model.decoder.up.2.block.2.norm2.weight torch.Size([512])
first_stage_model.decoder.up.2.block.2.norm2.bias torch.Size([512])
first_stage_model.decoder.up.2.block.2.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.block.2.conv2.bias torch.Size([512])
first_stage_model.decoder.up.2.upsample.conv.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.2.upsample.conv.bias torch.Size([512])
first_stage_model.decoder.up.3.block.0.norm1.weight torch.Size([512])
first_stage_model.decoder.up.3.block.0.norm1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.0.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.0.conv1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.0.norm2.weight torch.Size([512])
first_stage_model.decoder.up.3.block.0.norm2.bias torch.Size([512])
first_stage_model.decoder.up.3.block.0.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.0.conv2.bias torch.Size([512])
first_stage_model.decoder.up.3.block.1.norm1.weight torch.Size([512])
first_stage_model.decoder.up.3.block.1.norm1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.1.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.1.conv1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.1.norm2.weight torch.Size([512])
first_stage_model.decoder.up.3.block.1.norm2.bias torch.Size([512])
first_stage_model.decoder.up.3.block.1.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.1.conv2.bias torch.Size([512])
first_stage_model.decoder.up.3.block.2.norm1.weight torch.Size([512])
first_stage_model.decoder.up.3.block.2.norm1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.2.conv1.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.2.conv1.bias torch.Size([512])
first_stage_model.decoder.up.3.block.2.norm2.weight torch.Size([512])
first_stage_model.decoder.up.3.block.2.norm2.bias torch.Size([512])
first_stage_model.decoder.up.3.block.2.conv2.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.block.2.conv2.bias torch.Size([512])
first_stage_model.decoder.up.3.upsample.conv.weight torch.Size([512, 512, 3, 3])
first_stage_model.decoder.up.3.upsample.conv.bias torch.Size([512])
first_stage_model.decoder.norm_out.weight torch.Size([128])
first_stage_model.decoder.norm_out.bias torch.Size([128])
first_stage_model.decoder.conv_out.weight torch.Size([3, 128, 3, 3])
first_stage_model.decoder.conv_out.bias torch.Size([3])
first_stage_model.quant_conv.weight torch.Size([8, 8, 1, 1])
first_stage_model.quant_conv.bias torch.Size([8])
first_stage_model.post_quant_conv.weight torch.Size([4, 4, 1, 1])
first_stage_model.post_quant_conv.bias torch.Size([4])
cond_stage_model.transformer.text_model.embeddings.token_embedding.weight torch.Size([49408, 768])
cond_stage_model.transformer.text_model.embeddings.position_embedding.weight torch.Size([77, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight torch.Size([768, 768])
cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.weight torch.Size([3072, 768])
cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.bias torch.Size([3072])
cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.weight torch.Size([768, 3072])
cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.bias torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.weight torch.Size([768])
cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.bias torch.Size([768])
cond_stage_model.transformer.text_model.final_layer_norm.weight torch.Size([768])
cond_stage_model.transformer.text_model.final_layer_norm.bias torch.Size([768])
```