File size: 11,975 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import copy
import os
import torch
from pathlib import Path
from typing import NamedTuple
from modules import devices
from scripts.adapter import PlugableAdapter, Adapter, StyleAdapter, Adapter_light
from scripts.controlnet_lllite import PlugableControlLLLite
from scripts.cldm import PlugableControlModel
from scripts.controlmodel_ipadapter import PlugableIPAdapter
from scripts.logging import logger
from scripts.controlnet_diffusers import convert_from_diffuser_state_dict
from scripts.controlnet_lora import controlnet_lora_hijack, force_load_state_dict
from scripts.enums import ControlModelType
controlnet_default_config = {'adm_in_channels': None,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4],
'transformer_depth': [1, 1, 1, 0],
'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1,
'use_linear_in_transformer': False,
'context_dim': 768,
"num_heads": 8,
"global_average_pooling": False}
controlnet_sdxl_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [2, 4],
'transformer_depth': [0, 2, 10],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 10,
'use_linear_in_transformer': True,
'context_dim': 2048,
"num_head_channels": 64,
"global_average_pooling": False}
controlnet_sdxl_mid_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [4],
'transformer_depth': [0, 0, 1],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 1,
'use_linear_in_transformer': True,
'context_dim': 2048,
"num_head_channels": 64,
"global_average_pooling": False}
controlnet_sdxl_small_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [],
'transformer_depth': [0, 0, 0],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 0,
'use_linear_in_transformer': True,
"num_head_channels": 64,
'context_dim': 1,
"global_average_pooling": False}
t2i_adapter_config = {
'channels': [320, 640, 1280, 1280],
'nums_rb': 2,
'ksize': 1,
'sk': True,
'cin': 192,
'use_conv': False
}
t2i_adapter_light_config = {
'channels': [320, 640, 1280, 1280],
'nums_rb': 4,
'cin': 192,
}
t2i_adapter_style_config = {
'width': 1024,
'context_dim': 768,
'num_head': 8,
'n_layes': 3,
'num_token': 8,
}
# Stolen from https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/utils.py
def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace:
if x in state_dict:
state_dict[keys_to_replace[x]] = state_dict.pop(x)
return state_dict
# # Stolen from https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/utils.py
def state_dict_prefix_replace(state_dict, replace_prefix):
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
for x in replace:
state_dict[x[1]] = state_dict.pop(x[0])
return state_dict
class ControlModel(NamedTuple):
model: torch.nn.Module
type: ControlModelType
def build_model_by_guess(state_dict, unet, model_path: str) -> ControlModel:
if "lora_controlnet" in state_dict:
is_sdxl = "input_blocks.11.0.in_layers.0.weight" not in state_dict
logger.info(f"Using ControlNet lora ({'SDXL' if is_sdxl else 'SD15'})")
del state_dict['lora_controlnet']
config = copy.deepcopy(controlnet_sdxl_config if is_sdxl else controlnet_default_config)
config['global_average_pooling'] = False
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
config['use_fp16'] = devices.dtype_unet == torch.float16
with controlnet_lora_hijack():
network = PlugableControlModel(config, state_dict=None)
force_load_state_dict(network.control_model, state_dict)
network.is_control_lora = True
network.to(devices.dtype_unet)
return ControlModel(network, ControlModelType.ControlLoRA)
if "controlnet_cond_embedding.conv_in.weight" in state_dict: # diffusers
state_dict = convert_from_diffuser_state_dict(state_dict)
if 'adapter.body.0.resnets.0.block1.weight' in state_dict: # diffusers
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i)] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
state_dict = state_dict_prefix_replace(state_dict, prefix_replace)
if any('image_proj.' in x for x in state_dict.keys()) and any('ip_adapter.' in x for x in state_dict.keys()): # safetensor ipadapters
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in state_dict.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = state_dict[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = state_dict[key]
# sort keys
model = {"image_proj": st_model["image_proj"], "ip_adapter": {}}
sorted_keys = sorted(st_model["ip_adapter"].keys(), key=lambda x: int(x.split(".")[0]))
for key in sorted_keys:
model["ip_adapter"][key] = st_model["ip_adapter"][key]
state_dict = model
del st_model
model_has_shuffle_in_filename = 'shuffle' in Path(os.path.abspath(model_path)).stem.lower()
state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("adapter.", ""): v for k, v in state_dict.items()}
if 'input_hint_block.0.weight' in state_dict:
if 'label_emb.0.0.bias' not in state_dict:
config = copy.deepcopy(controlnet_default_config)
logger.info('controlnet_default_config')
config['global_average_pooling'] = model_has_shuffle_in_filename
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
config['context_dim'] = int(state_dict['input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight'].shape[1])
for key in state_dict.keys():
p = state_dict[key]
if 'proj_in.weight' in key or 'proj_out.weight' in key:
if len(p.shape) == 2:
p = p[..., None, None]
state_dict[key] = p
else:
has_full_layers = 'input_blocks.8.1.transformer_blocks.9.norm3.weight' in state_dict
has_mid_layers = 'input_blocks.8.1.transformer_blocks.0.norm3.weight' in state_dict
if has_full_layers:
config = copy.deepcopy(controlnet_sdxl_config)
logger.info('controlnet_sdxl_config')
elif has_mid_layers:
config = copy.deepcopy(controlnet_sdxl_mid_config)
logger.info('controlnet_sdxl_mid_config')
else:
config = copy.deepcopy(controlnet_sdxl_small_config)
logger.info('controlnet_sdxl_small_config')
config['global_average_pooling'] = False
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
if 'difference' in state_dict and unet is not None:
unet_state_dict = unet.state_dict()
unet_state_dict_keys = unet_state_dict.keys()
final_state_dict = {}
for key in state_dict.keys():
p = state_dict[key]
if key in unet_state_dict_keys:
p_new = p + unet_state_dict[key].clone().cpu()
else:
p_new = p
final_state_dict[key] = p_new
state_dict = final_state_dict
config['use_fp16'] = devices.dtype_unet == torch.float16
network = PlugableControlModel(config, state_dict)
network.to(devices.dtype_unet)
if "instant_id" in model_path.lower():
control_model_type = ControlModelType.InstantID
else:
control_model_type = ControlModelType.ControlNet
return ControlModel(network, control_model_type)
if 'conv_in.weight' in state_dict:
logger.info('t2i_adapter_config')
cin = int(state_dict['conv_in.weight'].shape[1])
channel = int(state_dict['conv_in.weight'].shape[0])
ksize = int(state_dict['body.0.block2.weight'].shape[2])
down_opts = tuple(filter(lambda item: item.endswith("down_opt.op.weight"), state_dict))
use_conv = len(down_opts) > 0
is_sdxl = cin == 256 or cin == 768
adapter = Adapter(
cin=cin,
channels=[channel, channel*2, channel*4, channel*4],
nums_rb=2,
ksize=ksize,
sk=True,
use_conv=use_conv,
is_sdxl=is_sdxl
).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return ControlModel(network, ControlModelType.T2I_Adapter)
if 'style_embedding' in state_dict:
config = copy.deepcopy(t2i_adapter_style_config)
logger.info('t2i_adapter_style_config')
adapter = StyleAdapter(**config).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return ControlModel(network, ControlModelType.T2I_StyleAdapter)
if 'body.0.in_conv.weight' in state_dict:
config = copy.deepcopy(t2i_adapter_light_config)
logger.info('t2i_adapter_light_config')
config['cin'] = int(state_dict['body.0.in_conv.weight'].shape[1])
adapter = Adapter_light(**config).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return ControlModel(network, ControlModelType.T2I_Adapter)
if 'ip_adapter' in state_dict:
network = PlugableIPAdapter(state_dict, model_path)
network.to('cpu')
return ControlModel(network, ControlModelType.IPAdapter)
if any('lllite' in k for k in state_dict.keys()):
network = PlugableControlLLLite(state_dict)
network.to('cpu')
return ControlModel(network, ControlModelType.Controlllite)
raise Exception('[ControlNet Error] Cannot recognize the ControlModel!')
|