File size: 8,000 Bytes
0163a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI/blob/main/node_control_net_lllite.py

import re
import torch

from modules import devices


class LLLiteModule(torch.nn.Module):
    def __init__(
        self,
        name: str,
        is_conv2d: bool,
        in_dim: int,
        depth: int,
        cond_emb_dim: int,
        mlp_dim: int,
    ):
        super().__init__()
        self.name = name
        self.is_conv2d = is_conv2d
        self.is_first = False

        modules = []
        modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))  # to latent (from VAE) size*2
        if depth == 1:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
        elif depth == 2:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
        elif depth == 3:
            # kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))

        self.conditioning1 = torch.nn.Sequential(*modules)

        if self.is_conv2d:
            self.down = torch.nn.Sequential(
                torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
            )
        else:
            self.down = torch.nn.Sequential(
                torch.nn.Linear(in_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim, in_dim),
            )

        self.depth = depth
        self.cond_image = None
        self.cond_emb = None

    def set_cond_image(self, cond_image):
        self.cond_image = cond_image
        self.cond_emb = None

    def forward(self, x, blk_shape):
        if self.cond_emb is None:
            # print(f"cond_emb is None, {self.name}")
            cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype))

            if blk_shape is not None:
                b, c, h, w = blk_shape
                cx = torch.nn.functional.interpolate(cx, (h, w), mode="nearest-exact")

            if not self.is_conv2d:
                # reshape / b,c,h,w -> b,h*w,c
                n, c, h, w = cx.shape
                cx = cx.view(n, c, h * w).permute(0, 2, 1)
            self.cond_emb = cx

        cx = self.cond_emb

        # uncond/condでxはバッチサイズが2倍
        if x.shape[0] != cx.shape[0]:
            if self.is_conv2d:
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
            else:
                # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)

        cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
        cx = self.mid(cx)
        cx = self.up(cx)
        return cx


all_hack = {}


def clear_all_lllite():
    global all_hack
    for k, v in all_hack.items():
        k.forward = v
        k.lllite_list = []
    all_hack = {}
    return


class PlugableControlLLLite(torch.nn.Module):
    def __init__(self, state_dict):
        super().__init__()
        self.cache = {}

        module_weights = {}
        for key, value in state_dict.items():
            fragments = key.split(".")
            module_name = fragments[0]
            weight_name = ".".join(fragments[1:])

            if module_name not in module_weights:
                module_weights[module_name] = {}
            module_weights[module_name][weight_name] = value

        modules = {}
        for module_name, weights in module_weights.items():
            if "conditioning1.4.weight" in weights:
                depth = 3
            elif weights["conditioning1.2.weight"].shape[-1] == 4:
                depth = 2
            else:
                depth = 1

            module = LLLiteModule(
                name=module_name,
                is_conv2d=weights["down.0.weight"].ndim == 4,
                in_dim=weights["down.0.weight"].shape[1],
                depth=depth,
                cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
                mlp_dim=weights["down.0.weight"].shape[0],
            )
            info = module.load_state_dict(weights)
            modules[module_name] = module
            setattr(self, module_name, module)
            if len(modules) == 1:
                module.is_first = True

        self.modules = modules
        return

    def reset(self):
        self.cache = {}
        return

    @torch.no_grad()
    def hook(self, model, cond, weight, start, end):
        global all_hack

        cond_image = cond * 2.0 - 1.0

        for module in self.modules.values():
            module.set_cond_image(cond_image)

        for k, v in self.modules.items():
            k = k.replace('middle_block', 'middle_blocks_0')
            match = re.match("lllite_unet_(.*)_blocks_(.*)_1_transformer_blocks_(.*)_(.*)_to_(.*)", k, re.M | re.I)
            assert match, 'Failed to load ControlLLLite!'
            root = match.group(1)
            block = match.group(2)
            block_number = match.group(3)
            attn_name = match.group(4)
            proj_name = match.group(5)
            if root == 'input':
                b = model.input_blocks[int(block)][1].transformer_blocks[int(block_number)]
            elif root == 'output':
                b = model.output_blocks[int(block)][1].transformer_blocks[int(block_number)]
            else:
                b = model.middle_block[1].transformer_blocks[int(block_number)]
            b = getattr(b, attn_name, None)
            assert b is not None, 'Failed to load ControlLLLite!'
            b = getattr(b, 'to_' + proj_name, None)
            assert b is not None, 'Failed to load ControlLLLite!'

            if not hasattr(b, 'lllite_list'):
                b.lllite_list = []

            if len(b.lllite_list) == 0:
                all_hack[b] = b.forward
                b.forward = self.get_hacked_forward(original_forward=b.forward, model=model, blk=b)

            b.lllite_list.append((weight, start, end, v))
        return

    def get_hacked_forward(self, original_forward, model, blk):
        @torch.no_grad()
        def forward(x, **kwargs):
            current_sampling_percent = getattr(model, 'current_sampling_percent', 0.5)
            current_h_shape = getattr(model, 'current_h_shape', None)
            is_in_high_res_fix = getattr(model, 'is_in_high_res_fix', False)

            if not is_in_high_res_fix:
                hack = 0
                for weight, start, end, module in blk.lllite_list:
                    module.to(x.device)
                    if current_sampling_percent < start or current_sampling_percent > end:
                        hack = hack + 0
                    else:
                        hack = hack + module(x, current_h_shape) * weight

                x = x + hack

            return original_forward(x, **kwargs)
        return forward