File size: 60,445 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
import gc
import tracemalloc
import os
import logging
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional, Tuple, List, NamedTuple
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
from modules.api.api import decode_base64_to_image
import gradio as gr
import time
from einops import rearrange
from scripts import global_state, hook, external_code, batch_hijack, controlnet_version, utils
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
from scripts.processor import *
from scripts.controlnet_lllite import clear_all_lllite
from scripts.controlmodel_ipadapter import clear_all_ip_adapter
from scripts.utils import load_state_dict, get_unique_axis0, align_dim_latent
from scripts.hook import ControlParams, UnetHook, HackedImageRNG
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.controlnet_ui.photopea import Photopea
from scripts.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, StableDiffusionProcessing
from modules.images import save_image
from scripts.infotext import Infotext
import cv2
import numpy as np
import torch
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
from scripts.controlnet_model_guess import build_model_by_guess, ControlModel
from scripts.hook import torch_dfs
# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)
def clear_all_secondary_control_models(m):
all_modules = torch_dfs(m)
for module in all_modules:
_original_inner_forward_cn_hijack = getattr(module, '_original_inner_forward_cn_hijack', None)
original_forward_cn_hijack = getattr(module, 'original_forward_cn_hijack', None)
if _original_inner_forward_cn_hijack is not None:
module._forward = _original_inner_forward_cn_hijack
if original_forward_cn_hijack is not None:
module.forward = original_forward_cn_hijack
clear_all_lllite()
clear_all_ip_adapter()
def find_closest_lora_model_name(search: str):
if not search:
return None
if search in global_state.cn_models:
return search
search = search.lower()
if search in global_state.cn_models_names:
return global_state.cn_models_names.get(search)
applicable = [name for name in global_state.cn_models_names.keys()
if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return global_state.cn_models_names[applicable[0]]
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
p.__class__ = processing.StableDiffusionProcessingTxt2Img
dummy = processing.StableDiffusionProcessingTxt2Img()
for k,v in dummy.__dict__.items():
if hasattr(p, k):
continue
setattr(p, k, v)
global_state.update_cn_models()
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
if image is None:
return None
if isinstance(image, (tuple, list)):
image = {'image': image[0], 'mask': image[1]}
elif not isinstance(image, dict):
image = {'image': image, 'mask': None}
else: # type(image) is dict
# copy to enable modifying the dict and prevent response serialization error
image = dict(image)
if isinstance(image['image'], str):
if os.path.exists(image['image']):
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
elif image['image']:
image['image'] = external_code.to_base64_nparray(image['image'])
else:
image['image'] = None
# If there is no image, return image with None image and None mask
if image['image'] is None:
image['mask'] = None
return image
if 'mask' not in image or image['mask'] is None:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
elif isinstance(image['mask'], str):
if os.path.exists(image['mask']):
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
elif image['mask']:
image['mask'] = external_code.to_base64_nparray(image['mask'])
else:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
return image
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
"""
Prepare an image mask for the inpainting process.
This function takes as input a PIL Image object and an instance of the
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
1. Convert the mask to grayscale (mode "L").
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
invert the mask colors.
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
Args:
mask (Image.Image): The input mask as a PIL Image object.
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
containing the processing parameters.
Returns:
mask (Image.Image): The prepared mask as a PIL Image object.
"""
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if hasattr(p, 'mask_blur_x'):
if getattr(p, "mask_blur_x", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
mask = Image.fromarray(np_mask)
if getattr(p, "mask_blur_y", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
mask = Image.fromarray(np_mask)
else:
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
"""
Set the random seed for NumPy based on the provided parameters.
Args:
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
Returns:
Optional[int]: The computed random seed if successful, or None if an exception occurs.
This function sets the random seed for NumPy using the seed and subseed values from the given instance of
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
Otherwise, it takes the maximum of the provided seed value and 0.
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
"""
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
def get_pytorch_control(x: np.ndarray) -> torch.Tensor:
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
y = y.to(devices.get_device_for("controlnet"))
y = y.clone()
return y
class Script(scripts.Script, metaclass=(
utils.TimeMeta if logger.level == logging.DEBUG else type)):
model_cache: Dict[str, ControlModel] = OrderedDict()
def __init__(self) -> None:
super().__init__()
self.latest_network = None
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
self.unloadable = global_state.cn_preprocessor_unloadable
self.input_image = None
self.latest_model_hash = ""
self.enabled_units = []
self.detected_map = []
self.post_processors = []
self.noise_modifier = None
self.ui_batch_option_state = [external_code.BatchOption.DEFAULT.value, False]
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
@staticmethod
def get_default_ui_unit(is_ui=True):
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
return cls(
enabled=False,
module="none",
model="None"
)
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str, photopea: Optional[Photopea]) -> Tuple[ControlNetUiGroup, gr.State]:
group = ControlNetUiGroup(
is_img2img,
Script.get_default_ui_unit(),
self.preprocessor,
photopea,
)
return group, group.render(tabname, elem_id_tabname)
def ui_batch_options(self, is_img2img: bool, elem_id_tabname: str):
batch_option = gr.Radio(
choices=[e.value for e in external_code.BatchOption],
value=external_code.BatchOption.DEFAULT.value,
label="Batch Option",
elem_id=f"{elem_id_tabname}_controlnet_batch_option_radio",
elem_classes="controlnet_batch_option_radio",
)
use_batch_style_align = gr.Checkbox(
label='[StyleAlign] Align image style in the batch.'
)
unit_args = [batch_option, use_batch_style_align]
def update_ui_batch_options(*args):
self.ui_batch_option_state = args
return
for comp in unit_args:
event_subscribers = []
if hasattr(comp, "edit"):
event_subscribers.append(comp.edit)
elif hasattr(comp, "click"):
event_subscribers.append(comp.click)
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
event_subscribers.append(comp.release)
elif hasattr(comp, "change"):
event_subscribers.append(comp.change)
if hasattr(comp, "clear"):
event_subscribers.append(comp.clear)
for event_subscriber in event_subscribers:
event_subscriber(
fn=update_ui_batch_options, inputs=unit_args
)
return
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
infotext = Infotext()
ui_groups = []
controls = []
max_models = shared.opts.data.get("control_net_unit_count", 3)
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
photopea = Photopea() if not shared.opts.data.get("controlnet_disable_photopea_edit", False) else None
if max_models > 1:
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
for i in range(max_models):
with gr.Tab(f"ControlNet Unit {i}",
elem_classes=['cnet-unit-tab']):
group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
else:
with gr.Column():
group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
with gr.Accordion(f"Batch Options", open=False, elem_id="controlnet_batch_options"):
self.ui_batch_options(is_img2img, elem_id_tabname)
for i, ui_group in enumerate(ui_groups):
infotext.register_unit(i, ui_group)
if shared.opts.data.get("control_net_sync_field_args", True):
self.infotext_fields = infotext.infotext_fields
self.paste_field_names = infotext.paste_field_names
return tuple(controls)
@staticmethod
def clear_control_model_cache():
Script.model_cache.clear()
gc.collect()
devices.torch_gc()
@staticmethod
def load_control_model(p, unet, model) -> ControlModel:
if model in Script.model_cache:
logger.info(f"Loading model from cache: {model}")
control_model = Script.model_cache[model]
if control_model.type == ControlModelType.Controlllite:
# Falls through to load Controlllite model fresh.
# TODO Fix context sharing issue for Controlllite.
pass
elif not control_model.type.allow_context_sharing():
# Creates a shallow-copy of control_model so that configs/inputs
# from different units can be bind correctly. While heavy objects
# of the underlying nn.Module is not copied.
return ControlModel(copy(control_model.model), control_model.type)
else:
return control_model
# Remove model from cache to clear space before building another model
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
Script.model_cache.popitem(last=False)
gc.collect()
devices.torch_gc()
control_model = Script.build_control_model(p, unet, model)
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
Script.model_cache[model] = control_model
return control_model
@staticmethod
def build_control_model(p, unet, model) -> ControlModel:
if model is None or model == 'None':
raise RuntimeError(f"You have not selected any ControlNet Model.")
model_path = global_state.cn_models.get(model, None)
if model_path is None:
model = find_closest_lora_model_name(model)
model_path = global_state.cn_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
# trim '"' at start/end
if model_path.startswith("\"") and model_path.endswith("\""):
model_path = model_path[1:-1]
if not os.path.exists(model_path):
raise ValueError(f"file not found: {model_path}")
logger.info(f"Loading model: {model}")
state_dict = load_state_dict(model_path)
control_model = build_model_by_guess(state_dict, unet, model_path)
control_model.model.to('cpu', dtype=p.sd_model.dtype)
logger.info(f"ControlNet model {model}({control_model.type}) loaded.")
return control_model
@staticmethod
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
return default
def get_element(obj, strict=False):
if not isinstance(obj, list):
return obj if not strict or idx == 0 else None
elif idx < len(obj):
return obj[idx]
else:
return None
attribute_value = get_element(getattr(p, attribute, None), strict)
return attribute_value if attribute_value is not None else default
@staticmethod
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
selector = Script.get_remote_call
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
unit.module = selector(p, "control_net_module", unit.module, idx)
unit.model = selector(p, "control_net_model", unit.model, idx)
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
unit.image = selector(p, "control_net_image", unit.image, idx)
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
# Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
# for more details.
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
return unit
@staticmethod
def detectmap_proc(detected_map, module, resize_mode, h, w):
if 'inpaint' in module:
detected_map = detected_map.astype(np.float32)
else:
detected_map = HWC3(detected_map)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def high_quality_resize(x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
if x.shape[0] != size[1] or x.shape[1] != size[0]:
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
else:
y = x
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
if resize_mode == external_code.ResizeMode.RESIZE:
detected_map = high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
if resize_mode == external_code.ResizeMode.OUTER_FIT:
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
else:
k = max(k0, k1)
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
@staticmethod
def get_enabled_units(p):
units = external_code.get_all_units_in_processing(p)
if len(units) == 0:
# fill a null group
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
if remote_unit.enabled:
units.append(remote_unit)
enabled_units = []
for idx, unit in enumerate(units):
local_unit = Script.parse_remote_call(p, unit, idx)
if not local_unit.enabled:
continue
if hasattr(local_unit, "unfold_merged"):
enabled_units.extend(local_unit.unfold_merged())
else:
enabled_units.append(copy(local_unit))
Infotext.write_infotext(enabled_units, p)
return enabled_units
@staticmethod
def choose_input_image(
p: processing.StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
idx: int
) -> Tuple[np.ndarray, external_code.ResizeMode]:
""" Choose input image from following sources with descending priority:
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
- unit.image: ControlNet tab input image.
- p.init_images: A1111 img2img tab input image.
Returns:
- The input image in ndarray form.
- The resize mode.
"""
def parse_unit_image(unit: external_code.ControlNetUnit) -> Union[List[Dict[str, np.ndarray]], Dict[str, np.ndarray]]:
unit_has_multiple_images = (
isinstance(unit.image, list) and
len(unit.image) > 0 and
"image" in unit.image[0]
)
if unit_has_multiple_images:
return [
d
for img in unit.image
for d in (image_dict_from_any(img),)
if d is not None
]
return image_dict_from_any(unit.image)
def decode_image(img) -> np.ndarray:
"""Need to check the image for API compatibility."""
if isinstance(img, str):
return np.asarray(decode_base64_to_image(image['image']))
else:
assert isinstance(img, np.ndarray)
return img
# 4 input image sources.
p_image_control = getattr(p, "image_control", None)
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
image = parse_unit_image(unit)
a1111_image = getattr(p, "init_images", [None])[0]
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
if batch_hijack.instance.is_batch and p_image_control is not None:
logger.warning("Warn: Using legacy field 'p.image_control'.")
input_image = HWC3(np.asarray(p_image_control))
elif p_input_image is not None:
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
color = HWC3(np.asarray(p_input_image['image']))
alpha = np.asarray(p_input_image['mask'])[..., None]
input_image = np.concatenate([color, alpha], axis=2)
else:
input_image = HWC3(np.asarray(p_input_image))
elif image:
if isinstance(image, list):
# Add mask logic if later there is a processor that accepts mask
# on multiple inputs.
input_image = [HWC3(decode_image(img['image'])) for img in image]
else:
input_image = HWC3(decode_image(image['image']))
if 'mask' in image and image['mask'] is not None:
while len(image['mask'].shape) < 3:
image['mask'] = image['mask'][..., np.newaxis]
if 'inpaint' in unit.module:
logger.info("using inpaint as input")
color = HWC3(image['image'])
alpha = image['mask'][:, :, 0:1]
input_image = np.concatenate([color, alpha], axis=2)
elif (
not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False) and
# There is wield gradio issue that would produce mask that is
# not pure color when no scribble is made on canvas.
# See https://github.com/Mikubill/sd-webui-controlnet/issues/1638.
not (
(image['mask'][:, :, 0] <= 5).all() or
(image['mask'][:, :, 0] >= 250).all()
)
):
logger.info("using mask as input")
input_image = HWC3(image['mask'][:, :, 0])
unit.module = 'none' # Always use black bg and white line
elif a1111_image is not None:
input_image = HWC3(np.asarray(a1111_image))
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
assert a1111_i2i_resize_mode is not None
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if 'inpaint' in unit.module:
if a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
assert a1111_mask.ndim == 2
assert a1111_mask.shape[0] == input_image.shape[0]
assert a1111_mask.shape[1] == input_image.shape[1]
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
else:
input_image = np.concatenate([
input_image[:, :, 0:3],
np.zeros_like(input_image, dtype=np.uint8)[:, :, 0:1],
], axis=2)
else:
# No input image detected.
if batch_hijack.instance.is_batch:
shared.state.interrupted = True
raise ValueError("controlnet is enabled but no input image is given")
assert isinstance(input_image, (np.ndarray, list))
return input_image, resize_mode
@staticmethod
def try_crop_image_with_a1111_mask(
p: StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
input_image: np.ndarray,
resize_mode: external_code.ResizeMode,
) -> np.ndarray:
"""
Crop ControlNet input image based on A1111 inpaint mask given.
This logic is crutial in upscale scripts, as they use A1111 mask + inpaint_full_res
to crop tiles.
"""
# Note: The method determining whether the active script is an upscale script is purely
# based on `extra_generation_params` these scripts attach on `p`, and subject to change
# in the future.
# TODO: Change this to a more robust condition once A1111 offers a way to verify script name.
is_upscale_script = any("upscale" in k.lower() for k in getattr(p, "extra_generation_params", {}).keys())
logger.debug(f"is_upscale_script={is_upscale_script}")
# Note: `inpaint_full_res` is "inpaint area" on UI. The flag is `True` when "Only masked"
# option is selected.
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
is_only_masked_inpaint = (
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.inpaint_full_res and
a1111_mask_image is not None
)
if (
'reference' not in unit.module
and is_only_masked_inpaint
and (is_upscale_script or unit.inpaint_crop_input_image)
):
logger.debug("Crop input image based on A1111 mask.")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
return input_image
@staticmethod
def bound_check_params(unit: external_code.ControlNetUnit) -> None:
"""
Checks and corrects negative parameters in ControlNetUnit 'unit'.
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
their default values if negative.
Args:
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
"""
cfg = preprocessor_sliders_config.get(
global_state.get_module_basename(unit.module), [])
defaults = {
param: cfg_default['value']
for param, cfg_default in zip(
("processor_res", 'threshold_a', 'threshold_b'), cfg)
if cfg_default is not None
}
for param, default_value in defaults.items():
value = getattr(unit, param)
if value < 0:
setattr(unit, param, default_value)
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
@staticmethod
def check_sd_version_compatible(unit: external_code.ControlNetUnit) -> None:
"""
Checks whether the given ControlNet unit has model compatible with the currently
active sd model. An exception is thrown if ControlNet unit is detected to be
incompatible.
"""
sd_version = global_state.get_sd_version()
assert sd_version != StableDiffusionVersion.UNKNOWN
if "revision" in unit.module.lower() and sd_version != StableDiffusionVersion.SDXL:
raise Exception(f"Preprocessor 'revision' only supports SDXL. Current SD base model is {sd_version}.")
# No need to check if the ControlModelType does not require model to be present.
if unit.model is None or unit.model.lower() == "none":
return
cnet_sd_version = StableDiffusionVersion.detect_from_model_name(unit.model)
if cnet_sd_version == StableDiffusionVersion.UNKNOWN:
logger.warn(f"Unable to determine version for ControlNet model '{unit.model}'.")
return
if not sd_version.is_compatible_with(cnet_sd_version):
raise Exception(f"ControlNet model {unit.model}({cnet_sd_version}) is not compatible with sd model({sd_version})")
@staticmethod
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]:
"""Returns (h, w, hr_h, hr_w)."""
h = align_dim_latent(p.height)
w = align_dim_latent(p.width)
high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = align_dim_latent(hr_y)
hr_x = align_dim_latent(hr_x)
else:
hr_y = h
hr_x = w
return h, w, hr_y, hr_x
def controlnet_main_entry(self, p):
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
self.noise_modifier = None
setattr(p, 'controlnet_control_loras', [])
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore()
# always clear (~0.05s)
clear_all_secondary_control_models(unet)
if not batch_hijack.instance.is_batch:
self.enabled_units = Script.get_enabled_units(p)
batch_option_uint_separate = self.ui_batch_option_state[0] == external_code.BatchOption.SEPARATE.value
batch_option_style_align = self.ui_batch_option_state[1]
if len(self.enabled_units) == 0 and not batch_option_style_align:
self.latest_network = None
return
logger.info(f"unit_separate = {batch_option_uint_separate}, style_align = {batch_option_style_align}")
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
Script.clear_control_model_cache()
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h, w, hr_y, hr_x = Script.get_target_dimensions(p)
for idx, unit in enumerate(self.enabled_units):
Script.bound_check_params(unit)
Script.check_sd_version_compatible(unit)
if (
"ip-adapter" in unit.module and
not global_state.ip_adapter_pairing_model[unit.module](unit.model)
):
logger.error(f"Invalid pair of IP-Adapter preprocessor({unit.module}) and model({unit.model}).\n"
"Please follow following pairing logic:\n"
+ global_state.ip_adapter_pairing_logic_text)
continue
if (
'inpaint_only' == unit.module and
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.image_mask is not None
):
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. Falls back to inpaint_global_harmonious.')
unit.module = 'inpaint'
if unit.module in model_free_preprocessors:
model_net = None
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
elif 'revision' in unit.module:
control_model_type = ControlModelType.ReVision
else:
raise Exception("Unable to determine control_model_type.")
else:
model_net, control_model_type = Script.load_control_model(p, unet, unit.model)
model_net.reset()
if control_model_type == ControlModelType.ControlLoRA:
control_lora = model_net.control_model
bind_control_lora(unet, control_lora)
p.controlnet_control_loras.append(control_lora)
input_image, resize_mode = Script.choose_input_image(p, unit, idx)
if isinstance(input_image, list):
assert unit.accepts_multiple_inputs()
input_images = input_image
else: # Following operations are only for single input image.
input_image = Script.try_crop_image_with_a1111_mask(p, unit, input_image, resize_mode)
input_image = np.ascontiguousarray(input_image.copy()).copy() # safe numpy
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
if unit.pixel_perfect:
unit.processor_res = external_code.pixel_perfect_resolution(
input_image,
target_H=h,
target_W=w,
resize_mode=resize_mode,
)
input_images = [input_image]
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
logger.info(f"Using preprocessor: {unit.module}")
logger.info(f'preprocessor resolution = {unit.processor_res}')
def store_detected_map(detected_map, module: str) -> None:
if unit.save_detected_map:
detected_maps.append((detected_map, module))
def preprocess_input_image(input_image: np.ndarray):
""" Preprocess single input image. """
detected_map, is_image = self.preprocessor[unit.module](
input_image,
res=unit.processor_res,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
low_vram=(
("clip" in unit.module or unit.module == "ip-adapter_face_id_plus") and
shared.opts.data.get("controlnet_clip_detector_on_cpu", False)
),
)
if high_res_fix:
if is_image:
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
store_detected_map(hr_detected_map, unit.module)
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
store_detected_map(detected_map, unit.module)
else:
control = detected_map
store_detected_map(input_image, unit.module)
if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
if control_model_type == ControlModelType.ReVision:
control = control['image_embeds']
return control, hr_control
controls, hr_controls = list(zip(*[preprocess_input_image(img) for img in input_images]))
if len(controls) == len(hr_controls) == 1:
control = controls[0]
hr_control = hr_controls[0]
else:
control = controls
hr_control = hr_controls
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=unit.processor_res,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
global_average_pooling = (
control_model_type.is_controlnet() and
model_net.control_model.global_average_pooling
)
control_mode = external_code.control_mode_from_value(unit.control_mode)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=control,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=unit.advanced_weighting,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_control,
hr_option=HiResFixOption.from_value(unit.hr_option) if high_res_fix else HiResFixOption.BOTH,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
if 'inpaint_only' in unit.module:
final_inpaint_feed = hr_control if hr_control is not None else control
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
def inpaint_only_post_processing(x):
_, H, W = x.shape
if Hmask != H or Wmask != W:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
r = final_inpaint_raw.to(x.dtype).to(x.device)
m = final_inpaint_mask.to(x.dtype).to(x.device)
y = m * x.clip(0, 1) + (1 - m) * r
y = y.clip(0, 1)
return y
post_processors.append(inpaint_only_post_processing)
if 'recolor' in unit.module:
final_feed = hr_control if hr_control is not None else control
final_feed = final_feed.detach().cpu().numpy()
final_feed = np.ascontiguousarray(final_feed).copy()
final_feed = final_feed[0, 0, :, :].astype(np.float32)
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
Hfeed, Wfeed = final_feed.shape
if 'luminance' in unit.module:
def recolor_luminance_post_processing(x):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
h[:, :, 0] = final_feed
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_luminance_post_processing)
if 'intensity' in unit.module:
def recolor_intensity_post_processing(x):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
h[:, :, 2] = final_feed
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_intensity_post_processing)
if '+lama' in unit.module:
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
self.noise_modifier = forward_param.used_hint_cond_latent
del model_net
is_low_vram = any(unit.low_vram for unit in self.enabled_units)
for i, param in enumerate(forward_params):
if param.control_model_type == ControlModelType.IPAdapter:
param.control_model.hook(
model=unet,
preprocessor_outputs=param.hint_cond,
weight=param.weight,
dtype=torch.float32,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.Controlllite:
param.control_model.hook(
model=unet,
cond=param.hint_cond,
weight=param.weight,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.InstantID:
# For instant_id we always expect ip-adapter model followed
# by ControlNet model.
assert i > 0, "InstantID control model should follow ipadapter model."
ip_adapter_param = forward_params[i - 1]
assert ip_adapter_param.control_model_type == ControlModelType.IPAdapter, \
"InstantID control model should follow ipadapter model."
control_model = ip_adapter_param.control_model
assert hasattr(control_model, "image_emb")
param.control_context_override = control_model.image_emb
self.latest_network = UnetHook(lowvram=is_low_vram)
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p,
batch_option_uint_separate=batch_option_uint_separate,
batch_option_style_align=batch_option_style_align)
self.detected_map = detected_maps
self.post_processors = post_processors
def controlnet_hack(self, p):
t = time.time()
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
tracemalloc.start()
setattr(self, "malloc_begin", tracemalloc.take_snapshot())
self.controlnet_main_entry(p)
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
logger.info("After hook malloc:")
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]:
logger.info(stat)
if len(self.enabled_units) > 0:
logger.info(f'ControlNet Hooked - Time = {time.time() - t}')
@staticmethod
def process_has_sdxl_refiner(p):
return getattr(p, 'refiner_checkpoint', None) is not None
def process(self, p, *args, **kwargs):
if not Script.process_has_sdxl_refiner(p):
self.controlnet_hack(p)
return
def before_process_batch(self, p, *args, **kwargs):
if self.noise_modifier is not None:
p.rng = HackedImageRNG(rng=p.rng,
noise_modifier=self.noise_modifier,
sd_model=p.sd_model)
self.noise_modifier = None
if Script.process_has_sdxl_refiner(p):
self.controlnet_hack(p)
return
def postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(len(images)):
images[i] = post_processor(images[i])
return
def postprocess(self, p, processed, *args):
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
clear_all_secondary_control_models(unet)
self.noise_modifier = None
for control_lora in getattr(p, 'controlnet_control_loras', []):
unbind_control_lora(control_lora)
p.controlnet_control_loras = []
self.post_processors = []
setattr(p, 'controlnet_vae_cache', None)
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
self.post_processors = []
if not batch_hijack.instance.is_batch:
self.enabled_units.clear()
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
for detect_map, module in self.detected_map:
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
if not os.path.isabs(detectmap_dir):
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
if module != "none":
os.makedirs(detectmap_dir, exist_ok=True)
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
save_image(img, detectmap_dir, module)
if self.latest_network is None:
return
if not batch_hijack.instance.is_batch:
if not shared.opts.data.get("control_net_no_detectmap", False):
if 'sd upscale' not in processor_params_flag:
if self.detected_map is not None:
for detect_map, module in self.detected_map:
if detect_map is None:
continue
detect_map = np.ascontiguousarray(detect_map.copy()).copy()
detect_map = external_code.visualize_inpaint_mask(detect_map)
processed.images.extend([
Image.fromarray(
detect_map.clip(0, 255).astype(np.uint8)
)
])
self.input_image = None
self.latest_network.restore()
self.latest_network = None
self.detected_map.clear()
gc.collect()
devices.torch_gc()
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
logger.info("After generation:")
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]:
logger.info(stat)
tracemalloc.stop()
def batch_tab_process(self, p, batches, *args, **kwargs):
self.enabled_units = Script.get_enabled_units(p)
for unit_i, unit in enumerate(self.enabled_units):
unit.batch_images = iter([batch[unit_i] for batch in batches])
def batch_tab_process_each(self, p, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
unit.image = next(unit.batch_images)
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False):
output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
if output_images:
unit.image = np.array(output_images[0])
else:
logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
def batch_tab_postprocess(self, p, *args, **kwargs):
self.enabled_units.clear()
self.input_image = None
if self.latest_network is None: return
self.latest_network.restore()
self.latest_network = None
self.detected_map.clear()
def on_ui_settings():
section = ('control_net', "ControlNet")
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
shared.opts.add_option("control_net_models_path", shared.OptionInfo(
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
"", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
2, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo(
7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section))
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo(
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo(
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo(
False, "Ignore mask on ControlNet input image if control type is not inpaint",
gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_clip_detector_on_cpu", shared.OptionInfo(
False, "Load CLIP preprocessor model on CPU",
gr.Checkbox, {"interactive": True}, section=section))
batch_hijack.instance.do_hijack()
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
script_callbacks.on_before_reload(ControlNetUiGroup.reset) |