Improve model card with abstract, detailed usage, and comprehensive benchmarks

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +72 -18
README.md CHANGED
@@ -10,36 +10,90 @@ tags:
10
  - hf-asr-leaderboard
11
  ---
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
 
15
- Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Benchmark Results
18
 
19
- Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
 
20
 
21
  | Model | Average WER (↓) | Encoder Size | Decoder Size |
22
  |-------|----------------|--------------|--------------|
23
- | [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
24
- | [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
25
- | [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
26
- | [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
27
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
28
- | [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
29
- | [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
30
- | [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
31
- | [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
 
 
 
 
 
32
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
33
  | [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
34
  | [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
35
  | [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
36
  | [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
37
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
38
- | [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
39
- | [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
40
- | [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
41
- | [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
42
-
 
 
 
 
43
 
44
  ## Citation
45
 
@@ -47,12 +101,12 @@ If you use LiteASR in your research, please cite the following paper:
47
 
48
  ```
49
  @misc{kamahori2025liteasrefficientautomaticspeech,
50
- title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
51
  author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
52
  year={2025},
53
  eprint={2502.20583},
54
  archivePrefix={arXiv},
55
  primaryClass={cs.LG},
56
- url={https://arxiv.org/abs/2502.20583},
57
  }
58
  ```
 
10
  - hf-asr-leaderboard
11
  ---
12
 
13
+ # LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
14
 
15
+ LiteASR is a compression scheme for automatic speech recognition (ASR) models that leverages the _low-rank_ properties of activation values. Our method can compress OpenAI's Whisper encoder by up to **~50%**.
16
+
17
+ See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for technical details.
18
+
19
+ ## Abstract
20
+
21
+ Modern automatic speech recognition (ASR) models, such as OpenAI's Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in reduced dimensionality. Evaluation results show that our method can compress Whisper large-v3's encoder size by over 50%, matching Whisper medium's size with better transcription accuracy, thereby establishing a new Pareto frontier of accuracy and efficiency.
22
+
23
+ ## Quick Start
24
+
25
+ The easiest way to run our model is to use our integration with HuggingFace Transformers library. We provide model weights for the compressed version of OpenAI Whisper series [here](https://huggingface.co/efficient-speech).
26
+
27
+ ```python
28
+ import librosa
29
+ import torch
30
+ from transformers import AutoProcessor, AutoModel
31
+
32
+ device = "cuda:0"
33
+ dtype = torch.float16
34
+
35
+ # load the compressed Whisper model
36
+ model = AutoModel.from_pretrained(
37
+ "efficient-speech/lite-whisper-tiny-fast", # This is the current model repository
38
+ trust_remote_code=True,
39
+ )
40
+ model.to(dtype).to(device)
41
+
42
+ # we use the same processor as the original base model (whisper-tiny)
43
+ processor = AutoProcessor.from_pretrained("openai/whisper-tiny")
44
+
45
+ # set the path to your audio file
46
+ path = "path/to/audio.wav"
47
+ audio, _ = librosa.load(path, sr=16000)
48
+
49
+ input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
50
+ input_features = input_features.to(dtype).to(device)
51
+
52
+ predicted_ids = model.generate(input_features)
53
+ transcription = processor.batch_decode(
54
+ predicted_ids,
55
+ skip_special_tokens=True
56
+ )[0]
57
+
58
+ print(transcription)
59
+ ```
60
 
61
  ## Benchmark Results
62
 
63
+ LiteASR can compress Whisper models with minimal degradation in accuracy (`lite-whisper` series). We provide three checkpoints per model: fast, plain, and acc, to be chosen based on resource and accuracy requirements.
64
+ Here is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
65
 
66
  | Model | Average WER (↓) | Encoder Size | Decoder Size |
67
  |-------|----------------|--------------|--------------|
68
+ | [whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 10.1 | 635M | 907M |
69
+ | [lite-whisper-large-v3-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-acc) | 10.1 | 429M | 907M |
70
+ | [lite-whisper-large-v3](https://huggingface.co/efficient-speech/lite-whisper-large-v3) | 10.2 | 377M | 907M |
71
+ | [lite-whisper-large-v3-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-fast) | 11.3 | 308M | 907M |
72
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
73
+ | [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) | 10.1 | 635M | 172M |
74
+ | [lite-whisper-large-v3-turbo-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-acc) | 10.2 | 421M | 172M |
75
+ | [lite-whisper-large-v3-turbo](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo) | 12.6 | 374M | 172M |
76
+ | [lite-whisper-large-v3-turbo-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-fast) | 20.1 | 313M | 172M |
77
+ | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
78
+ | [whisper-medium](https://huggingface.co/openai/whisper-medium) | 14.8 | 306M | 457M |
79
+ | [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
80
+ | [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
81
+ | [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
82
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
83
  | [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
84
  | [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
85
  | [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
86
  | [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
87
  | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
88
+ | [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
89
+ | [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
90
+ | [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
91
+ | [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
92
+ | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
93
+ | [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
94
+ | [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
95
+ | [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
96
+ | [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
97
 
98
  ## Citation
99
 
 
101
 
102
  ```
103
  @misc{kamahori2025liteasrefficientautomaticspeech,
104
+ title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
105
  author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
106
  year={2025},
107
  eprint={2502.20583},
108
  archivePrefix={arXiv},
109
  primaryClass={cs.LG},
110
+ url={https://arxiv.org/abs/2502.20583},
111
  }
112
  ```