Improve model card with abstract and sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +45 -3
README.md CHANGED
@@ -14,6 +14,49 @@ tags:
14
 
15
  Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ## Benchmark Results
18
 
19
  Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
@@ -40,19 +83,18 @@ Following is the average word error rate (WER) evaluated on the [ESB datasets](h
40
  | [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
41
  | [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
42
 
43
-
44
  ## Citation
45
 
46
  If you use LiteASR in your research, please cite the following paper:
47
 
48
  ```
49
  @misc{kamahori2025liteasrefficientautomaticspeech,
50
- title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
51
  author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
52
  year={2025},
53
  eprint={2502.20583},
54
  archivePrefix={arXiv},
55
  primaryClass={cs.LG},
56
- url={https://arxiv.org/abs/2502.20583},
57
  }
58
  ```
 
14
 
15
  Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
16
 
17
+ ## Abstract
18
+
19
+ Modern automatic speech recognition (ASR) models, such as OpenAI's Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in reduced dimensionality. Evaluation results show that our method can compress Whisper large-v3's encoder size by over 50%, matching Whisper medium's size with better transcription accuracy, thereby establishing a new Pareto frontier of accuracy and efficiency.
20
+
21
+ ## Sample Usage
22
+
23
+ The easiest way to run our model is to use our integration with HuggingFace Transformers library.
24
+ We provide model weights for the compressed version of OpenAI Whisper series [here](https://huggingface.co/efficient-speech).
25
+
26
+ ```python
27
+ import librosa
28
+ import torch
29
+ from transformers import AutoProcessor, AutoModel
30
+
31
+ device = "cuda:0"
32
+ dtype = torch.float16
33
+
34
+ # load the compressed Whisper model
35
+ model = AutoModel.from_pretrained(
36
+ "efficient-speech/lite-whisper-small",
37
+ trust_remote_code=True,
38
+ )
39
+ model.to(dtype).to(device)
40
+
41
+ # we use the same processor as the original model
42
+ processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
43
+
44
+ # set the path to your audio file
45
+ path = "path/to/audio.wav"
46
+ audio, _ = librosa.load(path, sr=16000)
47
+
48
+ input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
49
+ input_features = input_features.to(dtype).to(device)
50
+
51
+ predicted_ids = model.generate(input_features)
52
+ transcription = processor.batch_decode(
53
+ predicted_ids,
54
+ skip_special_tokens=True
55
+ )[0]
56
+
57
+ print(transcription)
58
+ ```
59
+
60
  ## Benchmark Results
61
 
62
  Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
 
83
  | [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
84
  | [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
85
 
 
86
  ## Citation
87
 
88
  If you use LiteASR in your research, please cite the following paper:
89
 
90
  ```
91
  @misc{kamahori2025liteasrefficientautomaticspeech,
92
+ title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
93
  author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
94
  year={2025},
95
  eprint={2502.20583},
96
  archivePrefix={arXiv},
97
  primaryClass={cs.LG},
98
+ url={https://arxiv.org/abs/2502.20583},
99
  }
100
  ```