PaReS-sentimenTw-political-PL
This model is a fine-tuned version of dkleczek/bert-base-polish-cased-v1 to predict 3-categorical sentiment. Fine-tuned on 1k sample of manually annotated Twitter data.
Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf
from transformers import pipeline
model_path = "eevvgg/PaReS-sentimenTw-political-PL"
sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path)
sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach",
"Brawo panie ministrze!"]
result = sentiment_task(sequence)
labels = [i['label'] for i in result] # ['Negative', 'Positive']
Model Sources
- BibTex citation:
@misc{SentimenTwPLGK2023,
author={Gajewska, Ewelina and Konat, Barbara},
title={PaReSTw: BERT for Sentiment Detection in Polish Language},
year={2023},
howpublished = {\url{https://huggingface.co/eevvgg/PaReS-sentimenTw-political-PL}},
}
Intended uses & limitations
Sentiment detection in Polish data (fine-tuned on tweets from political domain).
Training and evaluation data
- Trained for 3 epochs, mini-batch size of 8.
- Training results: loss: 0.1358926964368792
It achieves the following results on the test set (10%):
No. examples = 100
mini batch size = 8
accuracy = 0.950
macro f1 = 0.944
precision recall f1-score support 0 0.960 0.980 0.970 49 1 0.958 0.885 0.920 26 2 0.923 0.960 0.941 25
- Downloads last month
- 340
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.