File size: 2,298 Bytes
9948b59
 
 
 
 
 
 
 
 
 
1a079b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52a3252
cb461e0
 
d210e76
cb461e0
 
 
 
 
 
 
 
 
 
52a3252
 
 
9e49c77
 
 
4e1f447
9e49c77
4e1f447
9e49c77
4e1f447
9e49c77
1a079b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
datasets:
- ed001/ds-coder-instruct-v1
language:
- en
pipeline_tag: text-generation
tags:
- code
- data science
---

# The Data Science Coder

Data Science coder is a group of fine tuned models designed to help with coding for data science applications. It comes in 2 variants: 1.3b and 6.7b. Models are fine tuned from DeepSeek Coder instruct versions. Fine tuning was performed on the [ed001/ds-coder-instruct-v1](https://huggingface.co/datasets/ed001/ds-coder-instruct-v1) dataset which is constructed by filtering publicly available datasets on HuggingFace.

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

def build_instruction_prompt(instruction):
    return '''
    You are the Data Science Coder, a helpful AI assistant created by a man named Ed.
    You help people with data science coding and you answer questions about data science in a helpful manner.
    ### Instruction:
    {}
    ### Response:
    '''.format(instruction.strip()).lstrip()

tokenizer = AutoTokenizer.from_pretrained("ed001/datascience-coder-1.3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ed001/datascience-coder-1.3b", trust_remote_code=True).cuda()
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1024, top_p=0.95)
result = pipe(build_instruction_prompt("Perform EDA on the Iris dataset"))
print(result[0]['generated_text'])
```

## Training Details
lora_r: 16  
lora_alpha: 8  
lora_dropout: 0.05  
target_modules: q, k, v, o, gate_proj, down_proj, up_proj, lm_head  
weight_decay: 0  
optmizer: paged_adamw_32bit  
lr: 1e-4  
lr_scheduler: cosine  
max_seq_len: 4096  
batch_size: 4  
max_grad_norm: 0.5  
warmup_ratio: 0.05  
num_epochs: 1  

Training was performed on the python subset of the ds-coder-instruct dataset.

## Examples


<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/d3qCHXdrNNlq4VMus7e_S.png" width="90%"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/pU7flGRav_h1WDCj12RwP.png" width="90%"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/txFZANcIhaY-6mEe49kTE.png" width="90%"/>

## Contact
GitHub: [Ea0011](https://github.com/Ea0011)