File size: 2,298 Bytes
9948b59 1a079b5 52a3252 cb461e0 d210e76 cb461e0 52a3252 9e49c77 4e1f447 9e49c77 4e1f447 9e49c77 4e1f447 9e49c77 1a079b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
datasets:
- ed001/ds-coder-instruct-v1
language:
- en
pipeline_tag: text-generation
tags:
- code
- data science
---
# The Data Science Coder
Data Science coder is a group of fine tuned models designed to help with coding for data science applications. It comes in 2 variants: 1.3b and 6.7b. Models are fine tuned from DeepSeek Coder instruct versions. Fine tuning was performed on the [ed001/ds-coder-instruct-v1](https://huggingface.co/datasets/ed001/ds-coder-instruct-v1) dataset which is constructed by filtering publicly available datasets on HuggingFace.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
def build_instruction_prompt(instruction):
return '''
You are the Data Science Coder, a helpful AI assistant created by a man named Ed.
You help people with data science coding and you answer questions about data science in a helpful manner.
### Instruction:
{}
### Response:
'''.format(instruction.strip()).lstrip()
tokenizer = AutoTokenizer.from_pretrained("ed001/datascience-coder-1.3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ed001/datascience-coder-1.3b", trust_remote_code=True).cuda()
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1024, top_p=0.95)
result = pipe(build_instruction_prompt("Perform EDA on the Iris dataset"))
print(result[0]['generated_text'])
```
## Training Details
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
target_modules: q, k, v, o, gate_proj, down_proj, up_proj, lm_head
weight_decay: 0
optmizer: paged_adamw_32bit
lr: 1e-4
lr_scheduler: cosine
max_seq_len: 4096
batch_size: 4
max_grad_norm: 0.5
warmup_ratio: 0.05
num_epochs: 1
Training was performed on the python subset of the ds-coder-instruct dataset.
## Examples
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/d3qCHXdrNNlq4VMus7e_S.png" width="90%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/pU7flGRav_h1WDCj12RwP.png" width="90%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/62618f3e6dae705b2567fb13/txFZANcIhaY-6mEe49kTE.png" width="90%"/>
## Contact
GitHub: [Ea0011](https://github.com/Ea0011) |