segformer-vineyard-rows

This model is a fine-tuned version of nvidia/mit-b0 on the VineyardRows dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0012
  • Mean Iou: 0.5000
  • Mean Accuracy: 1.0000
  • Overall Accuracy: 1.0000
  • Accuracy Unlabeled: 1.0000
  • Accuracy Vineyard-row: nan
  • Iou Unlabeled: 1.0000
  • Iou Vineyard-row: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Vineyard-row Iou Unlabeled Iou Vineyard-row
0.0333 0.3509 20 0.0552 0.4994 0.9987 0.9987 0.9987 nan 0.9987 0.0
0.0104 0.7018 40 0.0056 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.0116 1.0526 60 0.0053 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.008 1.4035 80 0.0054 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.0043 1.7544 100 0.0053 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.004 2.1053 120 0.0040 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0035 2.4561 140 0.0030 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0036 2.8070 160 0.0039 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.0036 3.1579 180 0.0029 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.002 3.5088 200 0.0030 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0026 3.8596 220 0.0026 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0025 4.2105 240 0.0020 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0026 4.5614 260 0.0022 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0019 4.9123 280 0.0018 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0016 5.2632 300 0.0018 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0025 5.6140 320 0.0016 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0009 5.9649 340 0.0017 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0021 6.3158 360 0.0017 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0014 6.6667 380 0.0017 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0021 7.0175 400 0.0015 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.003 7.3684 420 0.0017 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0013 7.7193 440 0.0014 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0009 8.0702 460 0.0014 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0024 8.4211 480 0.0015 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0014 8.7719 500 0.0014 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0021 9.1228 520 0.0014 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0016 9.4737 540 0.0013 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0011 9.8246 560 0.0012 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0a0+df5bbc09d1.nv24.12
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
94
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for eborghi10/segformer-vineyard-rows

Base model

nvidia/mit-b0
Finetuned
(381)
this model