segformer-vineyard-rows
This model is a fine-tuned version of nvidia/mit-b0 on the VineyardRows dataset. It achieves the following results on the evaluation set:
- Loss: 0.0012
- Mean Iou: 0.5000
- Mean Accuracy: 1.0000
- Overall Accuracy: 1.0000
- Accuracy Unlabeled: 1.0000
- Accuracy Vineyard-row: nan
- Iou Unlabeled: 1.0000
- Iou Vineyard-row: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Vineyard-row | Iou Unlabeled | Iou Vineyard-row |
---|---|---|---|---|---|---|---|---|---|---|
0.0333 | 0.3509 | 20 | 0.0552 | 0.4994 | 0.9987 | 0.9987 | 0.9987 | nan | 0.9987 | 0.0 |
0.0104 | 0.7018 | 40 | 0.0056 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.0116 | 1.0526 | 60 | 0.0053 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.008 | 1.4035 | 80 | 0.0054 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.0043 | 1.7544 | 100 | 0.0053 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.004 | 2.1053 | 120 | 0.0040 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0035 | 2.4561 | 140 | 0.0030 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0036 | 2.8070 | 160 | 0.0039 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.0036 | 3.1579 | 180 | 0.0029 | 0.4999 | 0.9998 | 0.9998 | 0.9998 | nan | 0.9998 | 0.0 |
0.002 | 3.5088 | 200 | 0.0030 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0026 | 3.8596 | 220 | 0.0026 | 0.4999 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0025 | 4.2105 | 240 | 0.0020 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0026 | 4.5614 | 260 | 0.0022 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0019 | 4.9123 | 280 | 0.0018 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0016 | 5.2632 | 300 | 0.0018 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0025 | 5.6140 | 320 | 0.0016 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0009 | 5.9649 | 340 | 0.0017 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0021 | 6.3158 | 360 | 0.0017 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0014 | 6.6667 | 380 | 0.0017 | 0.5000 | 0.9999 | 0.9999 | 0.9999 | nan | 0.9999 | 0.0 |
0.0021 | 7.0175 | 400 | 0.0015 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.003 | 7.3684 | 420 | 0.0017 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0013 | 7.7193 | 440 | 0.0014 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0009 | 8.0702 | 460 | 0.0014 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0024 | 8.4211 | 480 | 0.0015 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0014 | 8.7719 | 500 | 0.0014 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0021 | 9.1228 | 520 | 0.0014 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0016 | 9.4737 | 540 | 0.0013 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
0.0011 | 9.8246 | 560 | 0.0012 | 0.5000 | 1.0000 | 1.0000 | 1.0000 | nan | 1.0000 | 0.0 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0a0+df5bbc09d1.nv24.12
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 94
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for eborghi10/segformer-vineyard-rows
Base model
nvidia/mit-b0