File size: 3,846 Bytes
230fb34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-14B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.0`
```yaml
base_model: Qwen/Qwen2.5-14B-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: main_dataset_v1.json
type: alpaca
special_tokens:
bos_token:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 1024
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: dywoo_axolotl
wandb_entity: dywoo
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs:
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
logging_steps: 100
xformers_attention:
flash_attention: true
warmup_ratio: 0.01
eval_steps: 100
save_steps: 100
save_total_limit: 2
eval_sample_packing:
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
```
</details><br>
# outputs/lora-out
This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0749
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 16
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0019 | 1 | 0.3101 |
| 0.1179 | 0.1869 | 100 | 0.0830 |
| 0.0312 | 0.3738 | 200 | 0.0780 |
| 0.0276 | 0.5607 | 300 | 0.0743 |
| 0.0256 | 0.7477 | 400 | 0.0692 |
| 0.0222 | 0.9346 | 500 | 0.0705 |
| 0.0199 | 1.1215 | 600 | 0.0686 |
| 0.0174 | 1.3084 | 700 | 0.0695 |
| 0.015 | 1.4953 | 800 | 0.0702 |
| 0.0158 | 1.6822 | 900 | 0.0721 |
| 0.0147 | 1.8692 | 1000 | 0.0706 |
| 0.0139 | 2.0561 | 1100 | 0.0701 |
| 0.0097 | 2.2430 | 1200 | 0.0739 |
| 0.0099 | 2.4299 | 1300 | 0.0745 |
| 0.0097 | 2.6168 | 1400 | 0.0745 |
| 0.0107 | 2.8037 | 1500 | 0.0746 |
| 0.0093 | 2.9907 | 1600 | 0.0749 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3 |