dvdmrs09 commited on
Commit
ed9818f
1 Parent(s): c277745

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,1091 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-2b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ Fine-tuned on python
9
+
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+
16
+ ### Model Sources [optional]
17
+ Gemma-2b trained on python-oasst dataset
18
+
19
+ ## Uses
20
+
21
+
22
+ ## Training Details
23
+
24
+ ### Training Data
25
+
26
+ {
27
+ "_timestamp": 1711018613.433522,
28
+ "train/grad_norm": 0.1240904619429259,
29
+ "train/global_step": 232,
30
+ "eval/steps_per_second": 2.894,
31
+ "_step": 232,
32
+ "_runtime": 2545.4226660728455,
33
+ "eval/loss": 1.189491629600525,
34
+ "eval/runtime": 1805.8574,
35
+ "train/learning_rate": 0.000014800637958532697,
36
+ "eval/samples_per_second": 23.152,
37
+ "_wandb.runtime": 2547,
38
+ "train/loss": 1.0436,
39
+ "train/epoch": 0.01
40
+ }
41
+
42
+ ### Results
43
+
44
+
45
+ #### Summary
46
+
47
+
48
+
49
+
50
+ ## Technical Specifications [optional]
51
+ {
52
+ "bf16": {
53
+ "desc": null,
54
+ "value": true
55
+ },
56
+ "fp16": {
57
+ "desc": null,
58
+ "value": false
59
+ },
60
+ "fsdp": {
61
+ "desc": null,
62
+ "value": []
63
+ },
64
+ "seed": {
65
+ "desc": null,
66
+ "value": 42
67
+ },
68
+ "tf32": {
69
+ "desc": null,
70
+ "value": false
71
+ },
72
+ "debug": {
73
+ "desc": null,
74
+ "value": []
75
+ },
76
+ "optim": {
77
+ "desc": null,
78
+ "value": "adamw_bnb_8bit"
79
+ },
80
+ "qlora": {
81
+ "desc": null,
82
+ "value": true
83
+ },
84
+ "top_k": {
85
+ "desc": null,
86
+ "value": 50
87
+ },
88
+ "top_p": {
89
+ "desc": null,
90
+ "value": 1
91
+ },
92
+ "_wandb": {
93
+ "desc": null,
94
+ "value": {
95
+ "m": [
96
+ {
97
+ "1": "train/global_step",
98
+ "6": [
99
+ 3
100
+ ]
101
+ },
102
+ {
103
+ "1": "train/loss",
104
+ "5": 1,
105
+ "6": [
106
+ 1
107
+ ]
108
+ },
109
+ {
110
+ "1": "train/grad_norm",
111
+ "5": 1,
112
+ "6": [
113
+ 1
114
+ ]
115
+ },
116
+ {
117
+ "1": "train/learning_rate",
118
+ "5": 1,
119
+ "6": [
120
+ 1
121
+ ]
122
+ },
123
+ {
124
+ "1": "train/epoch",
125
+ "5": 1,
126
+ "6": [
127
+ 1
128
+ ]
129
+ },
130
+ {
131
+ "1": "eval/loss",
132
+ "5": 1,
133
+ "6": [
134
+ 1
135
+ ]
136
+ },
137
+ {
138
+ "1": "eval/runtime",
139
+ "5": 1,
140
+ "6": [
141
+ 1
142
+ ]
143
+ },
144
+ {
145
+ "1": "eval/samples_per_second",
146
+ "5": 1,
147
+ "6": [
148
+ 1
149
+ ]
150
+ },
151
+ {
152
+ "1": "eval/steps_per_second",
153
+ "5": 1,
154
+ "6": [
155
+ 1
156
+ ]
157
+ }
158
+ ],
159
+ "t": {
160
+ "1": [
161
+ 1,
162
+ 5,
163
+ 11,
164
+ 49,
165
+ 51,
166
+ 53,
167
+ 55,
168
+ 71,
169
+ 84,
170
+ 98,
171
+ 99,
172
+ 100,
173
+ 105
174
+ ],
175
+ "2": [
176
+ 1,
177
+ 5,
178
+ 11,
179
+ 49,
180
+ 51,
181
+ 53,
182
+ 55,
183
+ 71,
184
+ 84,
185
+ 98,
186
+ 99,
187
+ 100,
188
+ 105
189
+ ],
190
+ "3": [
191
+ 3,
192
+ 7,
193
+ 23
194
+ ],
195
+ "4": "3.10.13",
196
+ "5": "0.16.4",
197
+ "6": "4.39.0.dev0",
198
+ "8": [
199
+ 5
200
+ ],
201
+ "9": {
202
+ "1": "transformers_trainer"
203
+ },
204
+ "13": "linux-x86_64"
205
+ },
206
+ "framework": "huggingface",
207
+ "start_time": 1711016068,
208
+ "cli_version": "0.16.4",
209
+ "is_jupyter_run": false,
210
+ "python_version": "3.10.13",
211
+ "is_kaggle_kernel": false,
212
+ "huggingface_version": "4.39.0.dev0"
213
+ }
214
+ },
215
+ "prefix": {
216
+ "desc": null,
217
+ "value": null
218
+ },
219
+ "do_eval": {
220
+ "desc": null,
221
+ "value": true
222
+ },
223
+ "no_cuda": {
224
+ "desc": null,
225
+ "value": false
226
+ },
227
+ "use_cpu": {
228
+ "desc": null,
229
+ "value": false
230
+ },
231
+ "do_train": {
232
+ "desc": null,
233
+ "value": false
234
+ },
235
+ "head_dim": {
236
+ "desc": null,
237
+ "value": 256
238
+ },
239
+ "id2label": {
240
+ "desc": null,
241
+ "value": {
242
+ "0": "LABEL_0",
243
+ "1": "LABEL_1"
244
+ }
245
+ },
246
+ "label2id": {
247
+ "desc": null,
248
+ "value": {
249
+ "LABEL_0": 0,
250
+ "LABEL_1": 1
251
+ }
252
+ },
253
+ "run_name": {
254
+ "desc": null,
255
+ "value": "./out"
256
+ },
257
+ "use_ipex": {
258
+ "desc": null,
259
+ "value": false
260
+ },
261
+ "adafactor": {
262
+ "desc": null,
263
+ "value": false
264
+ },
265
+ "data_seed": {
266
+ "desc": null,
267
+ "value": null
268
+ },
269
+ "deepspeed": {
270
+ "desc": null,
271
+ "value": "deepspeed_configs/zero1.json"
272
+ },
273
+ "do_sample": {
274
+ "desc": null,
275
+ "value": false
276
+ },
277
+ "hub_token": {
278
+ "desc": null,
279
+ },
280
+ "log_level": {
281
+ "desc": null,
282
+ "value": "passive"
283
+ },
284
+ "max_steps": {
285
+ "desc": null,
286
+ "value": -1
287
+ },
288
+ "num_beams": {
289
+ "desc": null,
290
+ "value": 1
291
+ },
292
+ "ray_scope": {
293
+ "desc": null,
294
+ "value": "last"
295
+ },
296
+ "report_to": {
297
+ "desc": null,
298
+ "value": [
299
+ "wandb"
300
+ ]
301
+ },
302
+ "typical_p": {
303
+ "desc": null,
304
+ "value": 1
305
+ },
306
+ "use_cache": {
307
+ "desc": null,
308
+ "value": false
309
+ },
310
+ "adam_beta1": {
311
+ "desc": null,
312
+ "value": 0.9
313
+ },
314
+ "adam_beta2": {
315
+ "desc": null,
316
+ "value": 0.999
317
+ },
318
+ "do_predict": {
319
+ "desc": null,
320
+ "value": false
321
+ },
322
+ "eval_delay": {
323
+ "desc": null,
324
+ "value": 0
325
+ },
326
+ "eval_steps": {
327
+ "desc": null,
328
+ "value": 0.03125
329
+ },
330
+ "hidden_act": {
331
+ "desc": null,
332
+ "value": "gelu"
333
+ },
334
+ "is_decoder": {
335
+ "desc": null,
336
+ "value": false
337
+ },
338
+ "local_rank": {
339
+ "desc": null,
340
+ "value": 0
341
+ },
342
+ "max_length": {
343
+ "desc": null,
344
+ "value": 20
345
+ },
346
+ "min_length": {
347
+ "desc": null,
348
+ "value": 0
349
+ },
350
+ "model_type": {
351
+ "desc": null,
352
+ "value": "gemma"
353
+ },
354
+ "optim_args": {
355
+ "desc": null,
356
+ "value": null
357
+ },
358
+ "orpo_alpha": {
359
+ "desc": null,
360
+ "value": null
361
+ },
362
+ "output_dir": {
363
+ "desc": null,
364
+ "value": "./out"
365
+ },
366
+ "past_index": {
367
+ "desc": null,
368
+ "value": -1
369
+ },
370
+ "rope_theta": {
371
+ "desc": null,
372
+ "value": 10000
373
+ },
374
+ "save_steps": {
375
+ "desc": null,
376
+ "value": 0.125
377
+ },
378
+ "vocab_size": {
379
+ "desc": null,
380
+ "value": 256000
381
+ },
382
+ "bench_split": {
383
+ "desc": null,
384
+ "value": "eval"
385
+ },
386
+ "ddp_backend": {
387
+ "desc": null,
388
+ "value": null
389
+ },
390
+ "ddp_timeout": {
391
+ "desc": null,
392
+ "value": 1800
393
+ },
394
+ "fsdp_config": {
395
+ "desc": null,
396
+ "value": {
397
+ "xla": false,
398
+ "xla_fsdp_v2": false,
399
+ "min_num_params": 0,
400
+ "xla_fsdp_grad_ckpt": false
401
+ }
402
+ },
403
+ "hidden_size": {
404
+ "desc": null,
405
+ "value": 2048
406
+ },
407
+ "label_names": {
408
+ "desc": null,
409
+ "value": null
410
+ },
411
+ "logging_dir": {
412
+ "desc": null,
413
+ "value": "./out/runs/Mar21_10-14-24_8205afe3ecd2"
414
+ },
415
+ "pretraining": {
416
+ "desc": null,
417
+ "value": false
418
+ },
419
+ "push_to_hub": {
420
+ "desc": null,
421
+ "value": false
422
+ },
423
+ "return_dict": {
424
+ "desc": null,
425
+ "value": true
426
+ },
427
+ "temperature": {
428
+ "desc": null,
429
+ "value": 1
430
+ },
431
+ "torch_dtype": {
432
+ "desc": null,
433
+ "value": "bfloat16"
434
+ },
435
+ "torchdynamo": {
436
+ "desc": null,
437
+ "value": null
438
+ },
439
+ "torchscript": {
440
+ "desc": null,
441
+ "value": false
442
+ },
443
+ "adam_epsilon": {
444
+ "desc": null,
445
+ "value": 1e-8
446
+ },
447
+ "bos_token_id": {
448
+ "desc": null,
449
+ "value": 2
450
+ },
451
+ "disable_tqdm": {
452
+ "desc": null,
453
+ "value": false
454
+ },
455
+ "eos_token_id": {
456
+ "desc": null,
457
+ "value": 1
458
+ },
459
+ "fp16_backend": {
460
+ "desc": null,
461
+ "value": "auto"
462
+ },
463
+ "hub_model_id": {
464
+ "desc": null,
465
+ "value": null
466
+ },
467
+ "hub_strategy": {
468
+ "desc": null,
469
+ "value": "every_save"
470
+ },
471
+ "pad_token_id": {
472
+ "desc": null,
473
+ "value": 0
474
+ },
475
+ "problem_type": {
476
+ "desc": null,
477
+ "value": null
478
+ },
479
+ "pruned_heads": {
480
+ "desc": null,
481
+ "value": {}
482
+ },
483
+ "relora_steps": {
484
+ "desc": null,
485
+ "value": null
486
+ },
487
+ "rms_norm_eps": {
488
+ "desc": null,
489
+ "value": 0.000001
490
+ },
491
+ "rope_scaling": {
492
+ "desc": null,
493
+ "value": null
494
+ },
495
+ "sep_token_id": {
496
+ "desc": null,
497
+ "value": null
498
+ },
499
+ "use_bfloat16": {
500
+ "desc": null,
501
+ "value": false
502
+ },
503
+ "warmup_ratio": {
504
+ "desc": null,
505
+ "value": 0
506
+ },
507
+ "warmup_steps": {
508
+ "desc": null,
509
+ "value": 3135
510
+ },
511
+ "weight_decay": {
512
+ "desc": null,
513
+ "value": 0
514
+ },
515
+ "_name_or_path": {
516
+ "desc": null,
517
+ "value": "dvdmrs09/gemma2b-train"
518
+ },
519
+ "architectures": {
520
+ "desc": null,
521
+ "value": [
522
+ "GemmaForCausalLM"
523
+ ]
524
+ },
525
+ "bad_words_ids": {
526
+ "desc": null,
527
+ "value": null
528
+ },
529
+ "bench_dataset": {
530
+ "desc": null,
531
+ "value": "pharaouk/dharma-1/dharma_1_mini.json"
532
+ },
533
+ "do_bench_eval": {
534
+ "desc": null,
535
+ "value": false
536
+ },
537
+ "jit_mode_eval": {
538
+ "desc": null,
539
+ "value": false
540
+ },
541
+ "learning_rate": {
542
+ "desc": null,
543
+ "value": 0.0002
544
+ },
545
+ "logging_steps": {
546
+ "desc": null,
547
+ "value": 1
548
+ },
549
+ "max_grad_norm": {
550
+ "desc": null,
551
+ "value": 1
552
+ },
553
+ "mp_parameters": {
554
+ "desc": null,
555
+ "value": ""
556
+ },
557
+ "output_scores": {
558
+ "desc": null,
559
+ "value": false
560
+ },
561
+ "save_strategy": {
562
+ "desc": null,
563
+ "value": "steps"
564
+ },
565
+ "split_batches": {
566
+ "desc": null,
567
+ "value": null
568
+ },
569
+ "torch_compile": {
570
+ "desc": null,
571
+ "value": false
572
+ },
573
+ "tpu_num_cores": {
574
+ "desc": null,
575
+ "value": null
576
+ },
577
+ "attention_bias": {
578
+ "desc": null,
579
+ "value": false
580
+ },
581
+ "bf16_full_eval": {
582
+ "desc": null,
583
+ "value": false
584
+ },
585
+ "early_stopping": {
586
+ "desc": null,
587
+ "value": false
588
+ },
589
+ "fp16_full_eval": {
590
+ "desc": null,
591
+ "value": false
592
+ },
593
+ "fp16_opt_level": {
594
+ "desc": null,
595
+ "value": "O1"
596
+ },
597
+ "length_penalty": {
598
+ "desc": null,
599
+ "value": 1
600
+ },
601
+ "max_seq_length": {
602
+ "desc": null,
603
+ "value": 4096
604
+ },
605
+ "sample_packing": {
606
+ "desc": null,
607
+ "value": false
608
+ },
609
+ "tf_legacy_loss": {
610
+ "desc": null,
611
+ "value": false
612
+ },
613
+ "use_mps_device": {
614
+ "desc": null,
615
+ "value": false
616
+ },
617
+ "finetuning_task": {
618
+ "desc": null,
619
+ "value": null
620
+ },
621
+ "group_by_length": {
622
+ "desc": null,
623
+ "value": false
624
+ },
625
+ "hub_always_push": {
626
+ "desc": null,
627
+ "value": false
628
+ },
629
+ "num_beam_groups": {
630
+ "desc": null,
631
+ "value": 1
632
+ },
633
+ "save_only_model": {
634
+ "desc": null,
635
+ "value": false
636
+ },
637
+ "suppress_tokens": {
638
+ "desc": null,
639
+ "value": null
640
+ },
641
+ "tokenizer_class": {
642
+ "desc": null,
643
+ "value": null
644
+ },
645
+ "dispatch_batches": {
646
+ "desc": null,
647
+ "value": null
648
+ },
649
+ "full_determinism": {
650
+ "desc": null,
651
+ "value": false
652
+ },
653
+ "hub_private_repo": {
654
+ "desc": null,
655
+ "value": false
656
+ },
657
+ "ignore_data_skip": {
658
+ "desc": null,
659
+ "value": false
660
+ },
661
+ "log_on_each_node": {
662
+ "desc": null,
663
+ "value": true
664
+ },
665
+ "logging_strategy": {
666
+ "desc": null,
667
+ "value": "steps"
668
+ },
669
+ "num_train_epochs": {
670
+ "desc": null,
671
+ "value": 8
672
+ },
673
+ "save_safetensors": {
674
+ "desc": null,
675
+ "value": true
676
+ },
677
+ "save_total_limit": {
678
+ "desc": null,
679
+ "value": 4
680
+ },
681
+ "attention_dropout": {
682
+ "desc": null,
683
+ "value": 0
684
+ },
685
+ "ddp_bucket_cap_mb": {
686
+ "desc": null,
687
+ "value": null
688
+ },
689
+ "diversity_penalty": {
690
+ "desc": null,
691
+ "value": 0
692
+ },
693
+ "do_causal_lm_eval": {
694
+ "desc": null,
695
+ "value": false
696
+ },
697
+ "greater_is_better": {
698
+ "desc": null,
699
+ "value": false
700
+ },
701
+ "initializer_range": {
702
+ "desc": null,
703
+ "value": 0.02
704
+ },
705
+ "intermediate_size": {
706
+ "desc": null,
707
+ "value": 16384
708
+ },
709
+ "log_level_replica": {
710
+ "desc": null,
711
+ "value": "warning"
712
+ },
713
+ "loraplus_lr_ratio": {
714
+ "desc": null,
715
+ "value": null
716
+ },
717
+ "lr_scheduler_type": {
718
+ "desc": null,
719
+ "value": "cosine"
720
+ },
721
+ "max_bench_samples": {
722
+ "desc": null,
723
+ "value": null
724
+ },
725
+ "num_hidden_layers": {
726
+ "desc": null,
727
+ "value": 18
728
+ },
729
+ "output_attentions": {
730
+ "desc": null,
731
+ "value": false
732
+ },
733
+ "push_to_hub_token": {
734
+ "desc": null,
735
+ "value": "<PUSH_TO_HUB_TOKEN>"
736
+ },
737
+ "save_on_each_node": {
738
+ "desc": null,
739
+ "value": false
740
+ },
741
+ "tpu_metrics_debug": {
742
+ "desc": null,
743
+ "value": false
744
+ },
745
+ "accelerator_config": {
746
+ "desc": null,
747
+ "value": {
748
+ "even_batches": true,
749
+ "split_batches": false,
750
+ "dispatch_batches": null,
751
+ "use_seedable_sampler": true
752
+ }
753
+ },
754
+ "is_encoder_decoder": {
755
+ "desc": null,
756
+ "value": false
757
+ },
758
+ "length_column_name": {
759
+ "desc": null,
760
+ "value": "length"
761
+ },
762
+ "logging_first_step": {
763
+ "desc": null,
764
+ "value": false
765
+ },
766
+ "relora_prune_ratio": {
767
+ "desc": null,
768
+ "value": 0.9
769
+ },
770
+ "repetition_penalty": {
771
+ "desc": null,
772
+ "value": 1
773
+ },
774
+ "torch_compile_mode": {
775
+ "desc": null,
776
+ "value": null
777
+ },
778
+ "add_cross_attention": {
779
+ "desc": null,
780
+ "value": false
781
+ },
782
+ "cosine_min_lr_ratio": {
783
+ "desc": null,
784
+ "value": null
785
+ },
786
+ "eval_sample_packing": {
787
+ "desc": null,
788
+ "value": false
789
+ },
790
+ "evaluation_strategy": {
791
+ "desc": null,
792
+ "value": "steps"
793
+ },
794
+ "forced_bos_token_id": {
795
+ "desc": null,
796
+ "value": null
797
+ },
798
+ "forced_eos_token_id": {
799
+ "desc": null,
800
+ "value": null
801
+ },
802
+ "fsdp_min_num_params": {
803
+ "desc": null,
804
+ "value": 0
805
+ },
806
+ "lr_quadratic_warmup": {
807
+ "desc": null,
808
+ "value": false
809
+ },
810
+ "lr_scheduler_kwargs": {
811
+ "desc": null,
812
+ "value": {}
813
+ },
814
+ "neftune_noise_alpha": {
815
+ "desc": null,
816
+ "value": null
817
+ },
818
+ "num_attention_heads": {
819
+ "desc": null,
820
+ "value": 8
821
+ },
822
+ "num_key_value_heads": {
823
+ "desc": null,
824
+ "value": 1
825
+ },
826
+ "quantization_config": {
827
+ "desc": null,
828
+ "value": {
829
+ "load_in_4bit": true,
830
+ "load_in_8bit": false,
831
+ "quant_method": "QuantizationMethod.BITS_AND_BYTES",
832
+ "_load_in_4bit": true,
833
+ "_load_in_8bit": false,
834
+ "llm_int8_threshold": 6,
835
+ "bnb_4bit_quant_type": "nf4",
836
+ "llm_int8_skip_modules": null,
837
+ "bnb_4bit_compute_dtype": "bfloat16",
838
+ "bnb_4bit_quant_storage": "uint8",
839
+ "llm_int8_has_fp16_weight": false,
840
+ "bnb_4bit_use_double_quant": true,
841
+ "llm_int8_enable_fp32_cpu_offload": false
842
+ }
843
+ },
844
+ "relora_anneal_steps": {
845
+ "desc": null,
846
+ "value": null
847
+ },
848
+ "relora_warmup_steps": {
849
+ "desc": null,
850
+ "value": null
851
+ },
852
+ "skip_memory_metrics": {
853
+ "desc": null,
854
+ "value": true
855
+ },
856
+ "tie_encoder_decoder": {
857
+ "desc": null,
858
+ "value": false
859
+ },
860
+ "tie_word_embeddings": {
861
+ "desc": null,
862
+ "value": true
863
+ },
864
+ "auto_find_batch_size": {
865
+ "desc": null,
866
+ "value": false
867
+ },
868
+ "bench_source_max_len": {
869
+ "desc": null,
870
+ "value": 2048
871
+ },
872
+ "dataloader_drop_last": {
873
+ "desc": null,
874
+ "value": false
875
+ },
876
+ "no_repeat_ngram_size": {
877
+ "desc": null,
878
+ "value": 0
879
+ },
880
+ "num_return_sequences": {
881
+ "desc": null,
882
+ "value": 1
883
+ },
884
+ "optim_target_modules": {
885
+ "desc": null,
886
+ "value": null
887
+ },
888
+ "output_hidden_states": {
889
+ "desc": null,
890
+ "value": false
891
+ },
892
+ "overwrite_output_dir": {
893
+ "desc": null,
894
+ "value": false
895
+ },
896
+ "prediction_loss_only": {
897
+ "desc": null,
898
+ "value": false
899
+ },
900
+ "push_to_hub_model_id": {
901
+ "desc": null,
902
+ "value": null
903
+ },
904
+ "task_specific_params": {
905
+ "desc": null,
906
+ "value": null
907
+ },
908
+ "transformers_version": {
909
+ "desc": null,
910
+ "value": "4.39.0.dev0"
911
+ },
912
+ "begin_suppress_tokens": {
913
+ "desc": null,
914
+ "value": null
915
+ },
916
+ "dataloader_pin_memory": {
917
+ "desc": null,
918
+ "value": true
919
+ },
920
+ "ddp_broadcast_buffers": {
921
+ "desc": null,
922
+ "value": null
923
+ },
924
+ "loraplus_lr_embedding": {
925
+ "desc": null,
926
+ "value": null
927
+ },
928
+ "metric_for_best_model": {
929
+ "desc": null,
930
+ "value": "loss"
931
+ },
932
+ "remove_invalid_values": {
933
+ "desc": null,
934
+ "value": false
935
+ },
936
+ "remove_unused_columns": {
937
+ "desc": null,
938
+ "value": true
939
+ },
940
+ "torch_compile_backend": {
941
+ "desc": null,
942
+ "value": null
943
+ },
944
+ "dataloader_num_workers": {
945
+ "desc": null,
946
+ "value": 0
947
+ },
948
+ "decoder_start_token_id": {
949
+ "desc": null,
950
+ "value": null
951
+ },
952
+ "gradient_checkpointing": {
953
+ "desc": null,
954
+ "value": true
955
+ },
956
+ "half_precision_backend": {
957
+ "desc": null,
958
+ "value": "auto"
959
+ },
960
+ "label_smoothing_factor": {
961
+ "desc": null,
962
+ "value": 0
963
+ },
964
+ "load_best_model_at_end": {
965
+ "desc": null,
966
+ "value": true
967
+ },
968
+ "logging_nan_inf_filter": {
969
+ "desc": null,
970
+ "value": true
971
+ },
972
+ "multipack_real_batches": {
973
+ "desc": null,
974
+ "value": false
975
+ },
976
+ "resume_from_checkpoint": {
977
+ "desc": null,
978
+ "value": null
979
+ },
980
+ "chunk_size_feed_forward": {
981
+ "desc": null,
982
+ "value": 0
983
+ },
984
+ "eval_accumulation_steps": {
985
+ "desc": null,
986
+ "value": 3
987
+ },
988
+ "max_position_embeddings": {
989
+ "desc": null,
990
+ "value": 8192
991
+ },
992
+ "per_gpu_eval_batch_size": {
993
+ "desc": null,
994
+ "value": null
995
+ },
996
+ "return_dict_in_generate": {
997
+ "desc": null,
998
+ "value": false
999
+ },
1000
+ "cosine_constant_lr_ratio": {
1001
+ "desc": null,
1002
+ "value": null
1003
+ },
1004
+ "per_gpu_train_batch_size": {
1005
+ "desc": null,
1006
+ "value": null
1007
+ },
1008
+ "push_to_hub_organization": {
1009
+ "desc": null,
1010
+ "value": null
1011
+ },
1012
+ "include_tokens_per_second": {
1013
+ "desc": null,
1014
+ "value": false
1015
+ },
1016
+ "sample_packing_efficiency": {
1017
+ "desc": null,
1018
+ "value": 1
1019
+ },
1020
+ "dataloader_prefetch_factor": {
1021
+ "desc": null,
1022
+ "value": null
1023
+ },
1024
+ "ddp_find_unused_parameters": {
1025
+ "desc": null,
1026
+ "value": false
1027
+ },
1028
+ "include_inputs_for_metrics": {
1029
+ "desc": null,
1030
+ "value": false
1031
+ },
1032
+ "per_device_eval_batch_size": {
1033
+ "desc": null,
1034
+ "value": 2
1035
+ },
1036
+ "use_legacy_prediction_loop": {
1037
+ "desc": null,
1038
+ "value": false
1039
+ },
1040
+ "cross_attention_hidden_size": {
1041
+ "desc": null,
1042
+ "value": null
1043
+ },
1044
+ "gradient_accumulation_steps": {
1045
+ "desc": null,
1046
+ "value": 3
1047
+ },
1048
+ "per_device_train_batch_size": {
1049
+ "desc": null,
1050
+ "value": 2
1051
+ },
1052
+ "encoder_no_repeat_ngram_size": {
1053
+ "desc": null,
1054
+ "value": 0
1055
+ },
1056
+ "dataloader_persistent_workers": {
1057
+ "desc": null,
1058
+ "value": false
1059
+ },
1060
+ "gradient_checkpointing_kwargs": {
1061
+ "desc": null,
1062
+ "value": {
1063
+ "use_reentrant": true
1064
+ }
1065
+ },
1066
+ "include_num_input_tokens_seen": {
1067
+ "desc": null,
1068
+ "value": false
1069
+ },
1070
+ "exponential_decay_length_penalty": {
1071
+ "desc": null,
1072
+ "value": null
1073
+ },
1074
+ "sample_packing_seq_len_multiplier": {
1075
+ "desc": null,
1076
+ "value": 2
1077
+ },
1078
+ "fsdp_transformer_layer_cls_to_wrap": {
1079
+ "desc": null,
1080
+ "value": null
1081
+ }
1082
+ }
1083
+ ### Model Architecture and Objective
1084
+
1085
+ ## Citation [optional]
1086
+
1087
+
1088
+ ## Glossary [optional]
1089
+ ### Framework versions
1090
+
1091
+ - PEFT 0.9.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-2b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "down_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99a127576ffaecb34de3d4edc89d1949ba3b1679dc1ed7fd2842d82eb9455bf
3
+ size 78480320
global_step448/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43c24988891062476de7382ed15e90fbad5418225d862ceb6fd88e9480502287
3
+ size 58886928
global_step448/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ab332d1739e2f3c68850dc96ff616c41dd510d174f3147ed26532e7c4514af
3
+ size 58885968
global_step448/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e7dc29b4b32f6ec9dcb5fc8be4fa57f424d8f9f2b0294472a3334a37fd7a5fe
3
+ size 58886992
global_step448/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274561b107cc73f237a78a2781ca85f1bd99e47cd797182bbc3c7bf629069a49
3
+ size 58886032
global_step448/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c28a01f237249400db81971db6adfc9c23deb3e84e97d8ec17b329ef0d45dbf
3
+ size 1159049922
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step448
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b355525fc0c81100cf2575a311c308531a030d69aa689ab177e589ba734ba26f
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b43ae95006a17e1c105f80d795d47c96c50c4d3de9b0fa179869e47dda9a2b7
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c56cc8de2cb76701e40dba1d6536107c0b5c90cf594d9db76a94a2b09f972e86
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc458f140d74069a4aa7df11c36e627bc9f362022588000b636afe9124026e7
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0f312f7dfc21d940ab17e42a9ddfcca8440bfc594bbdb7174eb9bb867dd848d
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,3293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.203959345817566,
3
+ "best_model_checkpoint": "./out/checkpoint-112",
4
+ "epoch": 3.9881305637982196,
5
+ "eval_steps": 28,
6
+ "global_step": 448,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 4.313233023002325,
14
+ "learning_rate": 1.8181818181818182e-05,
15
+ "loss": 1.9528,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "eval_loss": 2.1875686645507812,
21
+ "eval_runtime": 12.8608,
22
+ "eval_samples_per_second": 23.327,
23
+ "eval_steps_per_second": 2.955,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.02,
28
+ "grad_norm": 4.039172290955229,
29
+ "learning_rate": 3.6363636363636364e-05,
30
+ "loss": 1.8358,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03,
35
+ "grad_norm": 4.504705512003857,
36
+ "learning_rate": 5.4545454545454546e-05,
37
+ "loss": 2.0207,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.04,
42
+ "grad_norm": 4.591862504847867,
43
+ "learning_rate": 7.272727272727273e-05,
44
+ "loss": 1.979,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "grad_norm": 3.812893581399005,
50
+ "learning_rate": 9.090909090909092e-05,
51
+ "loss": 1.8356,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.05,
56
+ "grad_norm": 0.42886752872747064,
57
+ "learning_rate": 0.00010909090909090909,
58
+ "loss": 1.6722,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.06,
63
+ "grad_norm": 0.22497294481851865,
64
+ "learning_rate": 0.00012727272727272728,
65
+ "loss": 1.6711,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.07,
70
+ "grad_norm": 0.20955259847301927,
71
+ "learning_rate": 0.00014545454545454546,
72
+ "loss": 1.8546,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.08,
77
+ "grad_norm": 0.2200095325539683,
78
+ "learning_rate": 0.00016363636363636366,
79
+ "loss": 1.7538,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.09,
84
+ "grad_norm": 0.19187339879899318,
85
+ "learning_rate": 0.00018181818181818183,
86
+ "loss": 1.6137,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.1,
91
+ "grad_norm": 0.2113395673717837,
92
+ "learning_rate": 0.0002,
93
+ "loss": 1.5225,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.11,
98
+ "grad_norm": 0.17673768408382828,
99
+ "learning_rate": 0.00019999741592564903,
100
+ "loss": 1.5303,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.12,
105
+ "grad_norm": 0.24120852820548402,
106
+ "learning_rate": 0.00019998966383614488,
107
+ "loss": 1.5089,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.12,
112
+ "grad_norm": 0.3089489160535682,
113
+ "learning_rate": 0.00019997674413212708,
114
+ "loss": 1.4525,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.13,
119
+ "grad_norm": 0.2656143410731927,
120
+ "learning_rate": 0.00019995865748130516,
121
+ "loss": 1.4648,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.14,
126
+ "grad_norm": 3.769410316227205,
127
+ "learning_rate": 0.0001999354048184241,
128
+ "loss": 1.3439,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.15,
133
+ "grad_norm": 0.32102180658823753,
134
+ "learning_rate": 0.00019990698734521613,
135
+ "loss": 1.4644,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.16,
140
+ "grad_norm": 0.22094428128919438,
141
+ "learning_rate": 0.0001998734065303385,
142
+ "loss": 1.1927,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.17,
147
+ "grad_norm": 0.22344487218098863,
148
+ "learning_rate": 0.00019983466410929764,
149
+ "loss": 1.2916,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.18,
154
+ "grad_norm": 0.25036262498479456,
155
+ "learning_rate": 0.0001997907620843595,
156
+ "loss": 1.2982,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.19,
161
+ "grad_norm": 0.22671119151539426,
162
+ "learning_rate": 0.00019974170272444604,
163
+ "loss": 1.2146,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.2,
168
+ "grad_norm": 0.259249080403425,
169
+ "learning_rate": 0.00019968748856501788,
170
+ "loss": 1.2072,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.2,
175
+ "grad_norm": 0.23538477651406017,
176
+ "learning_rate": 0.00019962812240794343,
177
+ "loss": 1.3281,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.21,
182
+ "grad_norm": 0.2659115087625978,
183
+ "learning_rate": 0.000199563607321354,
184
+ "loss": 1.1396,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.22,
189
+ "grad_norm": 0.23617264858854836,
190
+ "learning_rate": 0.0001994939466394851,
191
+ "loss": 1.1389,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.23,
196
+ "grad_norm": 0.20514227454180176,
197
+ "learning_rate": 0.00019941914396250446,
198
+ "loss": 1.249,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.24,
203
+ "grad_norm": 0.19660894225830144,
204
+ "learning_rate": 0.00019933920315632557,
205
+ "loss": 1.1776,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.25,
210
+ "grad_norm": 0.2067663909729571,
211
+ "learning_rate": 0.00019925412835240826,
212
+ "loss": 1.1327,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.25,
217
+ "eval_loss": 1.2991960048675537,
218
+ "eval_runtime": 13.153,
219
+ "eval_samples_per_second": 22.808,
220
+ "eval_steps_per_second": 2.889,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.26,
225
+ "grad_norm": 0.1816588361901526,
226
+ "learning_rate": 0.0001991639239475448,
227
+ "loss": 1.1247,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.27,
232
+ "grad_norm": 0.19626955153633807,
233
+ "learning_rate": 0.00019906859460363307,
234
+ "loss": 1.1212,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.28,
239
+ "grad_norm": 0.21084275590405852,
240
+ "learning_rate": 0.00019896814524743528,
241
+ "loss": 0.9927,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.28,
246
+ "grad_norm": 0.16560054949456768,
247
+ "learning_rate": 0.0001988625810703235,
248
+ "loss": 1.1249,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.29,
253
+ "grad_norm": 0.14950879528294536,
254
+ "learning_rate": 0.0001987519075280114,
255
+ "loss": 1.1401,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.3,
260
+ "grad_norm": 0.1777966882651237,
261
+ "learning_rate": 0.00019863613034027224,
262
+ "loss": 1.0769,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.31,
267
+ "grad_norm": 0.1480537272052743,
268
+ "learning_rate": 0.00019851525549064323,
269
+ "loss": 1.0686,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.32,
274
+ "grad_norm": 0.16911906750319078,
275
+ "learning_rate": 0.00019838928922611632,
276
+ "loss": 1.0253,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.33,
281
+ "grad_norm": 0.15987682972555176,
282
+ "learning_rate": 0.00019825823805681543,
283
+ "loss": 1.0609,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.34,
288
+ "grad_norm": 0.15757332939676763,
289
+ "learning_rate": 0.0001981221087556598,
290
+ "loss": 1.1086,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.35,
295
+ "grad_norm": 0.13201845744757537,
296
+ "learning_rate": 0.00019798090835801418,
297
+ "loss": 1.073,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.36,
302
+ "grad_norm": 0.12544508015984754,
303
+ "learning_rate": 0.00019783464416132506,
304
+ "loss": 1.0633,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.36,
309
+ "grad_norm": 0.14645820383886451,
310
+ "learning_rate": 0.00019768332372474366,
311
+ "loss": 1.0653,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.37,
316
+ "grad_norm": 0.14814101902137117,
317
+ "learning_rate": 0.00019752695486873517,
318
+ "loss": 1.0937,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.38,
323
+ "grad_norm": 0.13888915595055443,
324
+ "learning_rate": 0.00019736554567467452,
325
+ "loss": 1.0462,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.39,
330
+ "grad_norm": 0.13185349806639524,
331
+ "learning_rate": 0.00019719910448442893,
332
+ "loss": 1.2177,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.4,
337
+ "grad_norm": 0.15271046712350847,
338
+ "learning_rate": 0.00019702763989992662,
339
+ "loss": 1.0237,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.41,
344
+ "grad_norm": 0.17053588557430902,
345
+ "learning_rate": 0.00019685116078271223,
346
+ "loss": 1.0038,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.42,
351
+ "grad_norm": 0.15641087356577812,
352
+ "learning_rate": 0.00019666967625348906,
353
+ "loss": 1.0886,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.43,
358
+ "grad_norm": 0.1544028594191567,
359
+ "learning_rate": 0.00019648319569164736,
360
+ "loss": 1.1378,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.44,
365
+ "grad_norm": 0.14794885994140625,
366
+ "learning_rate": 0.00019629172873477995,
367
+ "loss": 1.1495,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.45,
372
+ "grad_norm": 0.1577684884028266,
373
+ "learning_rate": 0.0001960952852781838,
374
+ "loss": 1.0782,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.45,
379
+ "grad_norm": 0.15961044045091288,
380
+ "learning_rate": 0.0001958938754743489,
381
+ "loss": 1.0107,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.46,
386
+ "grad_norm": 0.14486696586022083,
387
+ "learning_rate": 0.0001956875097324334,
388
+ "loss": 1.0494,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.47,
393
+ "grad_norm": 0.14250413725518896,
394
+ "learning_rate": 0.00019547619871772574,
395
+ "loss": 1.039,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.48,
400
+ "grad_norm": 0.1196720279125328,
401
+ "learning_rate": 0.00019525995335109334,
402
+ "loss": 1.0966,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.49,
407
+ "grad_norm": 0.14984795891635327,
408
+ "learning_rate": 0.0001950387848084183,
409
+ "loss": 1.0874,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.5,
414
+ "grad_norm": 0.14891088442480416,
415
+ "learning_rate": 0.00019481270452001987,
416
+ "loss": 1.097,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.5,
421
+ "eval_loss": 1.2264304161071777,
422
+ "eval_runtime": 13.2279,
423
+ "eval_samples_per_second": 22.679,
424
+ "eval_steps_per_second": 2.873,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 0.51,
429
+ "grad_norm": 0.17814266552244534,
430
+ "learning_rate": 0.00019458172417006347,
431
+ "loss": 1.1372,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 0.52,
436
+ "grad_norm": 0.16125636132578247,
437
+ "learning_rate": 0.00019434585569595708,
438
+ "loss": 1.0623,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 0.53,
443
+ "grad_norm": 0.15203437202125702,
444
+ "learning_rate": 0.00019410511128773418,
445
+ "loss": 1.0399,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 0.53,
450
+ "grad_norm": 0.1677461135605213,
451
+ "learning_rate": 0.0001938595033874238,
452
+ "loss": 1.0884,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.54,
457
+ "grad_norm": 0.13564559875683407,
458
+ "learning_rate": 0.0001936090446884074,
459
+ "loss": 1.0176,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.55,
464
+ "grad_norm": 0.1521886500642157,
465
+ "learning_rate": 0.00019335374813476302,
466
+ "loss": 1.0146,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.56,
471
+ "grad_norm": 0.1410132122625916,
472
+ "learning_rate": 0.00019309362692059617,
473
+ "loss": 1.044,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.57,
478
+ "grad_norm": 0.15237848179385577,
479
+ "learning_rate": 0.00019282869448935798,
480
+ "loss": 1.0354,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.58,
485
+ "grad_norm": 0.13871660988504514,
486
+ "learning_rate": 0.00019255896453315052,
487
+ "loss": 1.0189,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.59,
492
+ "grad_norm": 0.14863047478901453,
493
+ "learning_rate": 0.000192284450992019,
494
+ "loss": 1.0704,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.6,
499
+ "grad_norm": 0.13794806124403974,
500
+ "learning_rate": 0.0001920051680532314,
501
+ "loss": 1.0996,
502
+ "step": 67
503
+ },
504
+ {
505
+ "epoch": 0.61,
506
+ "grad_norm": 0.13030507705779365,
507
+ "learning_rate": 0.00019172113015054532,
508
+ "loss": 1.0015,
509
+ "step": 68
510
+ },
511
+ {
512
+ "epoch": 0.61,
513
+ "grad_norm": 0.15092494718902358,
514
+ "learning_rate": 0.0001914323519634619,
515
+ "loss": 1.0822,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.62,
520
+ "grad_norm": 0.1350212989006066,
521
+ "learning_rate": 0.00019113884841646736,
522
+ "loss": 1.0197,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.63,
527
+ "grad_norm": 0.18991168066586347,
528
+ "learning_rate": 0.00019084063467826137,
529
+ "loss": 1.046,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.64,
534
+ "grad_norm": 0.14884381774710187,
535
+ "learning_rate": 0.00019053772616097337,
536
+ "loss": 1.0346,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.65,
541
+ "grad_norm": 0.15579311209945296,
542
+ "learning_rate": 0.000190230138519366,
543
+ "loss": 1.0505,
544
+ "step": 73
545
+ },
546
+ {
547
+ "epoch": 0.66,
548
+ "grad_norm": 0.16015337150592127,
549
+ "learning_rate": 0.000189917887650026,
550
+ "loss": 1.0504,
551
+ "step": 74
552
+ },
553
+ {
554
+ "epoch": 0.67,
555
+ "grad_norm": 0.1443969321518926,
556
+ "learning_rate": 0.00018960098969054255,
557
+ "loss": 1.0755,
558
+ "step": 75
559
+ },
560
+ {
561
+ "epoch": 0.68,
562
+ "grad_norm": 0.15722162227095848,
563
+ "learning_rate": 0.00018927946101867347,
564
+ "loss": 1.0541,
565
+ "step": 76
566
+ },
567
+ {
568
+ "epoch": 0.69,
569
+ "grad_norm": 0.17009697584926559,
570
+ "learning_rate": 0.0001889533182514986,
571
+ "loss": 1.0231,
572
+ "step": 77
573
+ },
574
+ {
575
+ "epoch": 0.69,
576
+ "grad_norm": 0.1256822726781221,
577
+ "learning_rate": 0.0001886225782445612,
578
+ "loss": 0.8814,
579
+ "step": 78
580
+ },
581
+ {
582
+ "epoch": 0.7,
583
+ "grad_norm": 0.14019958069756655,
584
+ "learning_rate": 0.00018828725809099655,
585
+ "loss": 1.0277,
586
+ "step": 79
587
+ },
588
+ {
589
+ "epoch": 0.71,
590
+ "grad_norm": 0.17159459150063183,
591
+ "learning_rate": 0.0001879473751206489,
592
+ "loss": 0.9495,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.72,
597
+ "grad_norm": 0.146430011834186,
598
+ "learning_rate": 0.00018760294689917553,
599
+ "loss": 1.0598,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.73,
604
+ "grad_norm": 0.16834256802992476,
605
+ "learning_rate": 0.00018725399122713912,
606
+ "loss": 1.0237,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.74,
611
+ "grad_norm": 0.15663699267164208,
612
+ "learning_rate": 0.00018690052613908772,
613
+ "loss": 0.939,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.75,
618
+ "grad_norm": 0.15655985150409854,
619
+ "learning_rate": 0.0001865425699026226,
620
+ "loss": 1.0302,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.75,
625
+ "eval_loss": 1.2143030166625977,
626
+ "eval_runtime": 13.2387,
627
+ "eval_samples_per_second": 22.661,
628
+ "eval_steps_per_second": 2.87,
629
+ "step": 84
630
+ },
631
+ {
632
+ "epoch": 0.76,
633
+ "grad_norm": 0.15273470110260864,
634
+ "learning_rate": 0.00018618014101745442,
635
+ "loss": 1.0127,
636
+ "step": 85
637
+ },
638
+ {
639
+ "epoch": 0.77,
640
+ "grad_norm": 0.1723243680259614,
641
+ "learning_rate": 0.0001858132582144469,
642
+ "loss": 0.9306,
643
+ "step": 86
644
+ },
645
+ {
646
+ "epoch": 0.77,
647
+ "grad_norm": 0.14747098547446996,
648
+ "learning_rate": 0.00018544194045464886,
649
+ "loss": 1.0073,
650
+ "step": 87
651
+ },
652
+ {
653
+ "epoch": 0.78,
654
+ "grad_norm": 0.17208333285514918,
655
+ "learning_rate": 0.00018506620692831428,
656
+ "loss": 1.0328,
657
+ "step": 88
658
+ },
659
+ {
660
+ "epoch": 0.79,
661
+ "grad_norm": 0.14918051024971962,
662
+ "learning_rate": 0.0001846860770539105,
663
+ "loss": 1.0022,
664
+ "step": 89
665
+ },
666
+ {
667
+ "epoch": 0.8,
668
+ "grad_norm": 0.156315164090714,
669
+ "learning_rate": 0.00018430157047711474,
670
+ "loss": 1.0293,
671
+ "step": 90
672
+ },
673
+ {
674
+ "epoch": 0.81,
675
+ "grad_norm": 0.2013424548288477,
676
+ "learning_rate": 0.00018391270706979862,
677
+ "loss": 0.9395,
678
+ "step": 91
679
+ },
680
+ {
681
+ "epoch": 0.82,
682
+ "grad_norm": 0.17909726353002614,
683
+ "learning_rate": 0.00018351950692900126,
684
+ "loss": 0.9756,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 0.83,
689
+ "grad_norm": 0.16939245158726288,
690
+ "learning_rate": 0.00018312199037589068,
691
+ "loss": 0.9576,
692
+ "step": 93
693
+ },
694
+ {
695
+ "epoch": 0.84,
696
+ "grad_norm": 0.14685720680893694,
697
+ "learning_rate": 0.00018272017795471345,
698
+ "loss": 1.0045,
699
+ "step": 94
700
+ },
701
+ {
702
+ "epoch": 0.85,
703
+ "grad_norm": 0.17464839085505987,
704
+ "learning_rate": 0.000182314090431733,
705
+ "loss": 0.9862,
706
+ "step": 95
707
+ },
708
+ {
709
+ "epoch": 0.85,
710
+ "grad_norm": 0.16060904136932572,
711
+ "learning_rate": 0.00018190374879415632,
712
+ "loss": 1.0022,
713
+ "step": 96
714
+ },
715
+ {
716
+ "epoch": 0.86,
717
+ "grad_norm": 0.18715193350083867,
718
+ "learning_rate": 0.00018148917424904953,
719
+ "loss": 1.042,
720
+ "step": 97
721
+ },
722
+ {
723
+ "epoch": 0.87,
724
+ "grad_norm": 0.1675573400576595,
725
+ "learning_rate": 0.0001810703882222415,
726
+ "loss": 1.0047,
727
+ "step": 98
728
+ },
729
+ {
730
+ "epoch": 0.88,
731
+ "grad_norm": 0.1871466286989249,
732
+ "learning_rate": 0.00018064741235721687,
733
+ "loss": 0.9834,
734
+ "step": 99
735
+ },
736
+ {
737
+ "epoch": 0.89,
738
+ "grad_norm": 0.17453934867565302,
739
+ "learning_rate": 0.00018022026851399737,
740
+ "loss": 0.9649,
741
+ "step": 100
742
+ },
743
+ {
744
+ "epoch": 0.9,
745
+ "grad_norm": 0.15960631507184767,
746
+ "learning_rate": 0.0001797889787680119,
747
+ "loss": 0.9673,
748
+ "step": 101
749
+ },
750
+ {
751
+ "epoch": 0.91,
752
+ "grad_norm": 0.17844936635366368,
753
+ "learning_rate": 0.00017935356540895597,
754
+ "loss": 1.0951,
755
+ "step": 102
756
+ },
757
+ {
758
+ "epoch": 0.92,
759
+ "grad_norm": 0.16733018789000254,
760
+ "learning_rate": 0.00017891405093963938,
761
+ "loss": 0.9954,
762
+ "step": 103
763
+ },
764
+ {
765
+ "epoch": 0.93,
766
+ "grad_norm": 0.17305556075296993,
767
+ "learning_rate": 0.00017847045807482345,
768
+ "loss": 0.892,
769
+ "step": 104
770
+ },
771
+ {
772
+ "epoch": 0.93,
773
+ "grad_norm": 0.17197614099805034,
774
+ "learning_rate": 0.00017802280974004716,
775
+ "loss": 1.0494,
776
+ "step": 105
777
+ },
778
+ {
779
+ "epoch": 0.94,
780
+ "grad_norm": 0.18063836817127235,
781
+ "learning_rate": 0.000177571129070442,
782
+ "loss": 1.0264,
783
+ "step": 106
784
+ },
785
+ {
786
+ "epoch": 0.95,
787
+ "grad_norm": 0.14597707005699143,
788
+ "learning_rate": 0.00017711543940953668,
789
+ "loss": 0.9532,
790
+ "step": 107
791
+ },
792
+ {
793
+ "epoch": 0.96,
794
+ "grad_norm": 0.1422048149465345,
795
+ "learning_rate": 0.00017665576430805053,
796
+ "loss": 0.97,
797
+ "step": 108
798
+ },
799
+ {
800
+ "epoch": 0.97,
801
+ "grad_norm": 0.18313914688655572,
802
+ "learning_rate": 0.0001761921275226763,
803
+ "loss": 0.9282,
804
+ "step": 109
805
+ },
806
+ {
807
+ "epoch": 0.98,
808
+ "grad_norm": 0.200679751171441,
809
+ "learning_rate": 0.00017572455301485249,
810
+ "loss": 1.0,
811
+ "step": 110
812
+ },
813
+ {
814
+ "epoch": 0.99,
815
+ "grad_norm": 0.17700985594898055,
816
+ "learning_rate": 0.00017525306494952498,
817
+ "loss": 1.0165,
818
+ "step": 111
819
+ },
820
+ {
821
+ "epoch": 1.0,
822
+ "grad_norm": 0.19925777202726191,
823
+ "learning_rate": 0.0001747776876938981,
824
+ "loss": 1.0346,
825
+ "step": 112
826
+ },
827
+ {
828
+ "epoch": 1.0,
829
+ "eval_loss": 1.203959345817566,
830
+ "eval_runtime": 13.2547,
831
+ "eval_samples_per_second": 22.634,
832
+ "eval_steps_per_second": 2.867,
833
+ "step": 112
834
+ },
835
+ {
836
+ "epoch": 1.01,
837
+ "grad_norm": 0.1606469603473709,
838
+ "learning_rate": 0.00017429844581617532,
839
+ "loss": 0.9832,
840
+ "step": 113
841
+ },
842
+ {
843
+ "epoch": 1.01,
844
+ "grad_norm": 0.16403912763780054,
845
+ "learning_rate": 0.00017381536408428948,
846
+ "loss": 0.9346,
847
+ "step": 114
848
+ },
849
+ {
850
+ "epoch": 1.02,
851
+ "grad_norm": 0.1936046893744468,
852
+ "learning_rate": 0.00017332846746462288,
853
+ "loss": 0.9382,
854
+ "step": 115
855
+ },
856
+ {
857
+ "epoch": 1.03,
858
+ "grad_norm": 0.14250769247239573,
859
+ "learning_rate": 0.0001728377811207168,
860
+ "loss": 0.8914,
861
+ "step": 116
862
+ },
863
+ {
864
+ "epoch": 1.04,
865
+ "grad_norm": 0.17889563599797687,
866
+ "learning_rate": 0.00017234333041197126,
867
+ "loss": 0.9736,
868
+ "step": 117
869
+ },
870
+ {
871
+ "epoch": 1.05,
872
+ "grad_norm": 0.20288960866045594,
873
+ "learning_rate": 0.00017184514089233405,
874
+ "loss": 0.8477,
875
+ "step": 118
876
+ },
877
+ {
878
+ "epoch": 1.06,
879
+ "grad_norm": 0.20926349930533472,
880
+ "learning_rate": 0.00017134323830898037,
881
+ "loss": 0.9933,
882
+ "step": 119
883
+ },
884
+ {
885
+ "epoch": 1.07,
886
+ "grad_norm": 0.21316934416499642,
887
+ "learning_rate": 0.00017083764860098205,
888
+ "loss": 0.9168,
889
+ "step": 120
890
+ },
891
+ {
892
+ "epoch": 1.08,
893
+ "grad_norm": 0.21654320387312692,
894
+ "learning_rate": 0.0001703283978979671,
895
+ "loss": 0.9584,
896
+ "step": 121
897
+ },
898
+ {
899
+ "epoch": 1.09,
900
+ "grad_norm": 0.23789742308175463,
901
+ "learning_rate": 0.00016981551251876904,
902
+ "loss": 1.0298,
903
+ "step": 122
904
+ },
905
+ {
906
+ "epoch": 1.09,
907
+ "grad_norm": 0.16433271793469648,
908
+ "learning_rate": 0.00016929901897006698,
909
+ "loss": 0.8833,
910
+ "step": 123
911
+ },
912
+ {
913
+ "epoch": 1.1,
914
+ "grad_norm": 0.16908727866207868,
915
+ "learning_rate": 0.0001687789439450156,
916
+ "loss": 1.0675,
917
+ "step": 124
918
+ },
919
+ {
920
+ "epoch": 1.11,
921
+ "grad_norm": 0.1670067931363302,
922
+ "learning_rate": 0.00016825531432186543,
923
+ "loss": 0.9515,
924
+ "step": 125
925
+ },
926
+ {
927
+ "epoch": 1.12,
928
+ "grad_norm": 0.17777465531550865,
929
+ "learning_rate": 0.00016772815716257412,
930
+ "loss": 0.8929,
931
+ "step": 126
932
+ },
933
+ {
934
+ "epoch": 1.13,
935
+ "grad_norm": 0.18442783204919333,
936
+ "learning_rate": 0.00016719749971140754,
937
+ "loss": 0.8388,
938
+ "step": 127
939
+ },
940
+ {
941
+ "epoch": 1.14,
942
+ "grad_norm": 0.19073362304284272,
943
+ "learning_rate": 0.0001666633693935319,
944
+ "loss": 0.9584,
945
+ "step": 128
946
+ },
947
+ {
948
+ "epoch": 1.15,
949
+ "grad_norm": 0.20189563405135308,
950
+ "learning_rate": 0.00016612579381359622,
951
+ "loss": 1.0264,
952
+ "step": 129
953
+ },
954
+ {
955
+ "epoch": 1.16,
956
+ "grad_norm": 0.1694138210313381,
957
+ "learning_rate": 0.00016558480075430594,
958
+ "loss": 0.9592,
959
+ "step": 130
960
+ },
961
+ {
962
+ "epoch": 1.17,
963
+ "grad_norm": 0.19195382946787184,
964
+ "learning_rate": 0.00016504041817498678,
965
+ "loss": 0.974,
966
+ "step": 131
967
+ },
968
+ {
969
+ "epoch": 1.18,
970
+ "grad_norm": 0.20684215619155688,
971
+ "learning_rate": 0.00016449267421013994,
972
+ "loss": 0.8499,
973
+ "step": 132
974
+ },
975
+ {
976
+ "epoch": 1.18,
977
+ "grad_norm": 0.22003490429847744,
978
+ "learning_rate": 0.00016394159716798807,
979
+ "loss": 0.9659,
980
+ "step": 133
981
+ },
982
+ {
983
+ "epoch": 1.19,
984
+ "grad_norm": 0.21977918206745437,
985
+ "learning_rate": 0.00016338721552901212,
986
+ "loss": 0.9213,
987
+ "step": 134
988
+ },
989
+ {
990
+ "epoch": 1.2,
991
+ "grad_norm": 0.2076993903333204,
992
+ "learning_rate": 0.0001628295579444796,
993
+ "loss": 0.8119,
994
+ "step": 135
995
+ },
996
+ {
997
+ "epoch": 1.21,
998
+ "grad_norm": 0.2001771499954729,
999
+ "learning_rate": 0.0001622686532349637,
1000
+ "loss": 0.9183,
1001
+ "step": 136
1002
+ },
1003
+ {
1004
+ "epoch": 1.22,
1005
+ "grad_norm": 0.18671550149366203,
1006
+ "learning_rate": 0.00016170453038885394,
1007
+ "loss": 0.8836,
1008
+ "step": 137
1009
+ },
1010
+ {
1011
+ "epoch": 1.23,
1012
+ "grad_norm": 0.20867427207572573,
1013
+ "learning_rate": 0.0001611372185608578,
1014
+ "loss": 0.9964,
1015
+ "step": 138
1016
+ },
1017
+ {
1018
+ "epoch": 1.24,
1019
+ "grad_norm": 0.20035138443113176,
1020
+ "learning_rate": 0.0001605667470704942,
1021
+ "loss": 0.9209,
1022
+ "step": 139
1023
+ },
1024
+ {
1025
+ "epoch": 1.25,
1026
+ "grad_norm": 0.22696612020505577,
1027
+ "learning_rate": 0.0001599931454005781,
1028
+ "loss": 1.0162,
1029
+ "step": 140
1030
+ },
1031
+ {
1032
+ "epoch": 1.25,
1033
+ "eval_loss": 1.2188584804534912,
1034
+ "eval_runtime": 13.249,
1035
+ "eval_samples_per_second": 22.643,
1036
+ "eval_steps_per_second": 2.868,
1037
+ "step": 140
1038
+ },
1039
+ {
1040
+ "epoch": 1.26,
1041
+ "grad_norm": 0.21554353495018647,
1042
+ "learning_rate": 0.00015941644319569665,
1043
+ "loss": 1.0487,
1044
+ "step": 141
1045
+ },
1046
+ {
1047
+ "epoch": 1.26,
1048
+ "grad_norm": 0.22894492131909072,
1049
+ "learning_rate": 0.00015883667026067745,
1050
+ "loss": 0.9352,
1051
+ "step": 142
1052
+ },
1053
+ {
1054
+ "epoch": 1.27,
1055
+ "grad_norm": 0.19145184577172686,
1056
+ "learning_rate": 0.00015825385655904788,
1057
+ "loss": 0.8878,
1058
+ "step": 143
1059
+ },
1060
+ {
1061
+ "epoch": 1.28,
1062
+ "grad_norm": 0.22544664152936575,
1063
+ "learning_rate": 0.00015766803221148673,
1064
+ "loss": 1.0,
1065
+ "step": 144
1066
+ },
1067
+ {
1068
+ "epoch": 1.29,
1069
+ "grad_norm": 0.26000661355557114,
1070
+ "learning_rate": 0.00015707922749426737,
1071
+ "loss": 0.9339,
1072
+ "step": 145
1073
+ },
1074
+ {
1075
+ "epoch": 1.3,
1076
+ "grad_norm": 0.24433845134512236,
1077
+ "learning_rate": 0.00015648747283769317,
1078
+ "loss": 0.9474,
1079
+ "step": 146
1080
+ },
1081
+ {
1082
+ "epoch": 1.31,
1083
+ "grad_norm": 0.21973931169609887,
1084
+ "learning_rate": 0.00015589279882452476,
1085
+ "loss": 0.9357,
1086
+ "step": 147
1087
+ },
1088
+ {
1089
+ "epoch": 1.32,
1090
+ "grad_norm": 0.23929008733305812,
1091
+ "learning_rate": 0.0001552952361883994,
1092
+ "loss": 0.9985,
1093
+ "step": 148
1094
+ },
1095
+ {
1096
+ "epoch": 1.33,
1097
+ "grad_norm": 0.23431856747573573,
1098
+ "learning_rate": 0.00015469481581224272,
1099
+ "loss": 0.8913,
1100
+ "step": 149
1101
+ },
1102
+ {
1103
+ "epoch": 1.34,
1104
+ "grad_norm": 0.2233543327912565,
1105
+ "learning_rate": 0.00015409156872667258,
1106
+ "loss": 0.9877,
1107
+ "step": 150
1108
+ },
1109
+ {
1110
+ "epoch": 1.34,
1111
+ "grad_norm": 0.21281207674183256,
1112
+ "learning_rate": 0.0001534855261083954,
1113
+ "loss": 0.9071,
1114
+ "step": 151
1115
+ },
1116
+ {
1117
+ "epoch": 1.35,
1118
+ "grad_norm": 0.20314832700152685,
1119
+ "learning_rate": 0.00015287671927859494,
1120
+ "loss": 0.9373,
1121
+ "step": 152
1122
+ },
1123
+ {
1124
+ "epoch": 1.36,
1125
+ "grad_norm": 0.19648565819019825,
1126
+ "learning_rate": 0.00015226517970131343,
1127
+ "loss": 0.9469,
1128
+ "step": 153
1129
+ },
1130
+ {
1131
+ "epoch": 1.37,
1132
+ "grad_norm": 0.2262428264639853,
1133
+ "learning_rate": 0.00015165093898182562,
1134
+ "loss": 1.0066,
1135
+ "step": 154
1136
+ },
1137
+ {
1138
+ "epoch": 1.38,
1139
+ "grad_norm": 0.22253433035020442,
1140
+ "learning_rate": 0.00015103402886500525,
1141
+ "loss": 0.8875,
1142
+ "step": 155
1143
+ },
1144
+ {
1145
+ "epoch": 1.39,
1146
+ "grad_norm": 0.181161648904613,
1147
+ "learning_rate": 0.00015041448123368455,
1148
+ "loss": 0.9004,
1149
+ "step": 156
1150
+ },
1151
+ {
1152
+ "epoch": 1.4,
1153
+ "grad_norm": 0.20968483802367816,
1154
+ "learning_rate": 0.00014979232810700637,
1155
+ "loss": 0.9133,
1156
+ "step": 157
1157
+ },
1158
+ {
1159
+ "epoch": 1.41,
1160
+ "grad_norm": 0.20540509271288435,
1161
+ "learning_rate": 0.0001491676016387694,
1162
+ "loss": 0.8876,
1163
+ "step": 158
1164
+ },
1165
+ {
1166
+ "epoch": 1.42,
1167
+ "grad_norm": 0.18762795731312454,
1168
+ "learning_rate": 0.00014854033411576659,
1169
+ "loss": 0.933,
1170
+ "step": 159
1171
+ },
1172
+ {
1173
+ "epoch": 1.42,
1174
+ "grad_norm": 0.23223345997338857,
1175
+ "learning_rate": 0.00014791055795611624,
1176
+ "loss": 0.9182,
1177
+ "step": 160
1178
+ },
1179
+ {
1180
+ "epoch": 1.43,
1181
+ "grad_norm": 0.21932384461027146,
1182
+ "learning_rate": 0.00014727830570758678,
1183
+ "loss": 0.9514,
1184
+ "step": 161
1185
+ },
1186
+ {
1187
+ "epoch": 1.44,
1188
+ "grad_norm": 0.21819663730951108,
1189
+ "learning_rate": 0.0001466436100459146,
1190
+ "loss": 0.9162,
1191
+ "step": 162
1192
+ },
1193
+ {
1194
+ "epoch": 1.45,
1195
+ "grad_norm": 0.2325813323476676,
1196
+ "learning_rate": 0.00014600650377311522,
1197
+ "loss": 0.9308,
1198
+ "step": 163
1199
+ },
1200
+ {
1201
+ "epoch": 1.46,
1202
+ "grad_norm": 0.2568337182939043,
1203
+ "learning_rate": 0.0001453670198157883,
1204
+ "loss": 0.9995,
1205
+ "step": 164
1206
+ },
1207
+ {
1208
+ "epoch": 1.47,
1209
+ "grad_norm": 0.22578454460723413,
1210
+ "learning_rate": 0.00014472519122341566,
1211
+ "loss": 0.9052,
1212
+ "step": 165
1213
+ },
1214
+ {
1215
+ "epoch": 1.48,
1216
+ "grad_norm": 0.23564258958796755,
1217
+ "learning_rate": 0.00014408105116665336,
1218
+ "loss": 0.9714,
1219
+ "step": 166
1220
+ },
1221
+ {
1222
+ "epoch": 1.49,
1223
+ "grad_norm": 0.24266133562839415,
1224
+ "learning_rate": 0.00014343463293561734,
1225
+ "loss": 0.9219,
1226
+ "step": 167
1227
+ },
1228
+ {
1229
+ "epoch": 1.5,
1230
+ "grad_norm": 0.23472454708184465,
1231
+ "learning_rate": 0.00014278596993816308,
1232
+ "loss": 0.8762,
1233
+ "step": 168
1234
+ },
1235
+ {
1236
+ "epoch": 1.5,
1237
+ "eval_loss": 1.2197421789169312,
1238
+ "eval_runtime": 13.2616,
1239
+ "eval_samples_per_second": 22.622,
1240
+ "eval_steps_per_second": 2.865,
1241
+ "step": 168
1242
+ },
1243
+ {
1244
+ "epoch": 1.5,
1245
+ "grad_norm": 0.23623633375452713,
1246
+ "learning_rate": 0.00014213509569815884,
1247
+ "loss": 0.8809,
1248
+ "step": 169
1249
+ },
1250
+ {
1251
+ "epoch": 1.51,
1252
+ "grad_norm": 0.25344275204523486,
1253
+ "learning_rate": 0.00014148204385375321,
1254
+ "loss": 0.7972,
1255
+ "step": 170
1256
+ },
1257
+ {
1258
+ "epoch": 1.52,
1259
+ "grad_norm": 0.23111396119549557,
1260
+ "learning_rate": 0.0001408268481556366,
1261
+ "loss": 0.8228,
1262
+ "step": 171
1263
+ },
1264
+ {
1265
+ "epoch": 1.53,
1266
+ "grad_norm": 0.2510618369255398,
1267
+ "learning_rate": 0.00014016954246529696,
1268
+ "loss": 0.8849,
1269
+ "step": 172
1270
+ },
1271
+ {
1272
+ "epoch": 1.54,
1273
+ "grad_norm": 0.2764366116622668,
1274
+ "learning_rate": 0.0001395101607532698,
1275
+ "loss": 0.8936,
1276
+ "step": 173
1277
+ },
1278
+ {
1279
+ "epoch": 1.55,
1280
+ "grad_norm": 0.24325811719582827,
1281
+ "learning_rate": 0.00013884873709738257,
1282
+ "loss": 0.8602,
1283
+ "step": 174
1284
+ },
1285
+ {
1286
+ "epoch": 1.56,
1287
+ "grad_norm": 0.213781513838486,
1288
+ "learning_rate": 0.00013818530568099327,
1289
+ "loss": 0.9492,
1290
+ "step": 175
1291
+ },
1292
+ {
1293
+ "epoch": 1.57,
1294
+ "grad_norm": 0.2397396374239057,
1295
+ "learning_rate": 0.00013751990079122412,
1296
+ "loss": 1.0499,
1297
+ "step": 176
1298
+ },
1299
+ {
1300
+ "epoch": 1.58,
1301
+ "grad_norm": 0.21579907170368723,
1302
+ "learning_rate": 0.00013685255681718922,
1303
+ "loss": 0.9438,
1304
+ "step": 177
1305
+ },
1306
+ {
1307
+ "epoch": 1.58,
1308
+ "grad_norm": 0.2359312681928786,
1309
+ "learning_rate": 0.0001361833082482175,
1310
+ "loss": 0.9289,
1311
+ "step": 178
1312
+ },
1313
+ {
1314
+ "epoch": 1.59,
1315
+ "grad_norm": 0.2618189093396496,
1316
+ "learning_rate": 0.0001355121896720703,
1317
+ "loss": 0.981,
1318
+ "step": 179
1319
+ },
1320
+ {
1321
+ "epoch": 1.6,
1322
+ "grad_norm": 0.20876513773174135,
1323
+ "learning_rate": 0.00013483923577315348,
1324
+ "loss": 0.82,
1325
+ "step": 180
1326
+ },
1327
+ {
1328
+ "epoch": 1.61,
1329
+ "grad_norm": 0.22162748553995645,
1330
+ "learning_rate": 0.00013416448133072526,
1331
+ "loss": 1.0131,
1332
+ "step": 181
1333
+ },
1334
+ {
1335
+ "epoch": 1.62,
1336
+ "grad_norm": 0.20975549982451164,
1337
+ "learning_rate": 0.00013348796121709862,
1338
+ "loss": 0.8763,
1339
+ "step": 182
1340
+ },
1341
+ {
1342
+ "epoch": 1.63,
1343
+ "grad_norm": 0.22840397707525473,
1344
+ "learning_rate": 0.00013280971039583906,
1345
+ "loss": 0.949,
1346
+ "step": 183
1347
+ },
1348
+ {
1349
+ "epoch": 1.64,
1350
+ "grad_norm": 0.23384636230161737,
1351
+ "learning_rate": 0.0001321297639199575,
1352
+ "loss": 0.9567,
1353
+ "step": 184
1354
+ },
1355
+ {
1356
+ "epoch": 1.65,
1357
+ "grad_norm": 0.22905979409902957,
1358
+ "learning_rate": 0.000131448156930099,
1359
+ "loss": 0.9153,
1360
+ "step": 185
1361
+ },
1362
+ {
1363
+ "epoch": 1.66,
1364
+ "grad_norm": 0.27620894683694563,
1365
+ "learning_rate": 0.0001307649246527263,
1366
+ "loss": 0.8246,
1367
+ "step": 186
1368
+ },
1369
+ {
1370
+ "epoch": 1.66,
1371
+ "grad_norm": 0.23004170633106227,
1372
+ "learning_rate": 0.0001300801023982995,
1373
+ "loss": 1.0181,
1374
+ "step": 187
1375
+ },
1376
+ {
1377
+ "epoch": 1.67,
1378
+ "grad_norm": 0.2219849136264378,
1379
+ "learning_rate": 0.00012939372555945112,
1380
+ "loss": 0.9535,
1381
+ "step": 188
1382
+ },
1383
+ {
1384
+ "epoch": 1.68,
1385
+ "grad_norm": 0.24458750452490116,
1386
+ "learning_rate": 0.0001287058296091567,
1387
+ "loss": 0.8968,
1388
+ "step": 189
1389
+ },
1390
+ {
1391
+ "epoch": 1.69,
1392
+ "grad_norm": 0.2564337740159555,
1393
+ "learning_rate": 0.00012801645009890195,
1394
+ "loss": 0.7955,
1395
+ "step": 190
1396
+ },
1397
+ {
1398
+ "epoch": 1.7,
1399
+ "grad_norm": 0.24100850371438767,
1400
+ "learning_rate": 0.0001273256226568451,
1401
+ "loss": 0.9235,
1402
+ "step": 191
1403
+ },
1404
+ {
1405
+ "epoch": 1.71,
1406
+ "grad_norm": 0.24757089527873732,
1407
+ "learning_rate": 0.00012663338298597563,
1408
+ "loss": 1.007,
1409
+ "step": 192
1410
+ },
1411
+ {
1412
+ "epoch": 1.72,
1413
+ "grad_norm": 0.24701038583742888,
1414
+ "learning_rate": 0.00012593976686226904,
1415
+ "loss": 0.9885,
1416
+ "step": 193
1417
+ },
1418
+ {
1419
+ "epoch": 1.73,
1420
+ "grad_norm": 0.26373721125634964,
1421
+ "learning_rate": 0.0001252448101328381,
1422
+ "loss": 0.8785,
1423
+ "step": 194
1424
+ },
1425
+ {
1426
+ "epoch": 1.74,
1427
+ "grad_norm": 0.2227761464470136,
1428
+ "learning_rate": 0.00012454854871407994,
1429
+ "loss": 0.8806,
1430
+ "step": 195
1431
+ },
1432
+ {
1433
+ "epoch": 1.74,
1434
+ "grad_norm": 0.2283950634350429,
1435
+ "learning_rate": 0.00012385101858982005,
1436
+ "loss": 0.9053,
1437
+ "step": 196
1438
+ },
1439
+ {
1440
+ "epoch": 1.74,
1441
+ "eval_loss": 1.2198154926300049,
1442
+ "eval_runtime": 13.2208,
1443
+ "eval_samples_per_second": 22.692,
1444
+ "eval_steps_per_second": 2.874,
1445
+ "step": 196
1446
+ },
1447
+ {
1448
+ "epoch": 1.75,
1449
+ "grad_norm": 0.23406423788354982,
1450
+ "learning_rate": 0.00012315225580945252,
1451
+ "loss": 0.9397,
1452
+ "step": 197
1453
+ },
1454
+ {
1455
+ "epoch": 1.76,
1456
+ "grad_norm": 0.23807045727443327,
1457
+ "learning_rate": 0.0001224522964860769,
1458
+ "loss": 0.9712,
1459
+ "step": 198
1460
+ },
1461
+ {
1462
+ "epoch": 1.77,
1463
+ "grad_norm": 0.2463614808838948,
1464
+ "learning_rate": 0.00012175117679463187,
1465
+ "loss": 0.8558,
1466
+ "step": 199
1467
+ },
1468
+ {
1469
+ "epoch": 1.78,
1470
+ "grad_norm": 0.24737417059302014,
1471
+ "learning_rate": 0.00012104893297002567,
1472
+ "loss": 0.9723,
1473
+ "step": 200
1474
+ },
1475
+ {
1476
+ "epoch": 1.79,
1477
+ "grad_norm": 0.243750688050595,
1478
+ "learning_rate": 0.0001203456013052634,
1479
+ "loss": 0.964,
1480
+ "step": 201
1481
+ },
1482
+ {
1483
+ "epoch": 1.8,
1484
+ "grad_norm": 0.24572059557106538,
1485
+ "learning_rate": 0.00011964121814957137,
1486
+ "loss": 0.9109,
1487
+ "step": 202
1488
+ },
1489
+ {
1490
+ "epoch": 1.81,
1491
+ "grad_norm": 0.24044117903962453,
1492
+ "learning_rate": 0.00011893581990651848,
1493
+ "loss": 1.0019,
1494
+ "step": 203
1495
+ },
1496
+ {
1497
+ "epoch": 1.82,
1498
+ "grad_norm": 0.2737568489071465,
1499
+ "learning_rate": 0.00011822944303213486,
1500
+ "loss": 0.8893,
1501
+ "step": 204
1502
+ },
1503
+ {
1504
+ "epoch": 1.82,
1505
+ "grad_norm": 0.24122455882790084,
1506
+ "learning_rate": 0.00011752212403302784,
1507
+ "loss": 0.9162,
1508
+ "step": 205
1509
+ },
1510
+ {
1511
+ "epoch": 1.83,
1512
+ "grad_norm": 0.28991871401626856,
1513
+ "learning_rate": 0.00011681389946449504,
1514
+ "loss": 0.8555,
1515
+ "step": 206
1516
+ },
1517
+ {
1518
+ "epoch": 1.84,
1519
+ "grad_norm": 0.23767408810646548,
1520
+ "learning_rate": 0.00011610480592863531,
1521
+ "loss": 0.9936,
1522
+ "step": 207
1523
+ },
1524
+ {
1525
+ "epoch": 1.85,
1526
+ "grad_norm": 0.22614733706173062,
1527
+ "learning_rate": 0.00011539488007245702,
1528
+ "loss": 0.916,
1529
+ "step": 208
1530
+ },
1531
+ {
1532
+ "epoch": 1.86,
1533
+ "grad_norm": 0.22471992425846515,
1534
+ "learning_rate": 0.00011468415858598411,
1535
+ "loss": 0.8872,
1536
+ "step": 209
1537
+ },
1538
+ {
1539
+ "epoch": 1.87,
1540
+ "grad_norm": 0.22675717145909688,
1541
+ "learning_rate": 0.00011397267820035986,
1542
+ "loss": 0.8393,
1543
+ "step": 210
1544
+ },
1545
+ {
1546
+ "epoch": 1.88,
1547
+ "grad_norm": 0.2727459336483823,
1548
+ "learning_rate": 0.00011326047568594851,
1549
+ "loss": 0.8265,
1550
+ "step": 211
1551
+ },
1552
+ {
1553
+ "epoch": 1.89,
1554
+ "grad_norm": 0.25216778031670767,
1555
+ "learning_rate": 0.00011254758785043515,
1556
+ "loss": 0.9939,
1557
+ "step": 212
1558
+ },
1559
+ {
1560
+ "epoch": 1.9,
1561
+ "grad_norm": 0.269147378424304,
1562
+ "learning_rate": 0.0001118340515369232,
1563
+ "loss": 0.9102,
1564
+ "step": 213
1565
+ },
1566
+ {
1567
+ "epoch": 1.91,
1568
+ "grad_norm": 0.2216178370833471,
1569
+ "learning_rate": 0.00011111990362203033,
1570
+ "loss": 0.8778,
1571
+ "step": 214
1572
+ },
1573
+ {
1574
+ "epoch": 1.91,
1575
+ "grad_norm": 0.2602474934716497,
1576
+ "learning_rate": 0.00011040518101398276,
1577
+ "loss": 0.9454,
1578
+ "step": 215
1579
+ },
1580
+ {
1581
+ "epoch": 1.92,
1582
+ "grad_norm": 0.2658635078442998,
1583
+ "learning_rate": 0.00010968992065070769,
1584
+ "loss": 0.8098,
1585
+ "step": 216
1586
+ },
1587
+ {
1588
+ "epoch": 1.93,
1589
+ "grad_norm": 0.20997905209488962,
1590
+ "learning_rate": 0.00010897415949792427,
1591
+ "loss": 0.9318,
1592
+ "step": 217
1593
+ },
1594
+ {
1595
+ "epoch": 1.94,
1596
+ "grad_norm": 0.24752453752221557,
1597
+ "learning_rate": 0.00010825793454723325,
1598
+ "loss": 0.949,
1599
+ "step": 218
1600
+ },
1601
+ {
1602
+ "epoch": 1.95,
1603
+ "grad_norm": 0.255579569750529,
1604
+ "learning_rate": 0.0001075412828142051,
1605
+ "loss": 0.915,
1606
+ "step": 219
1607
+ },
1608
+ {
1609
+ "epoch": 1.96,
1610
+ "grad_norm": 0.23186981930561867,
1611
+ "learning_rate": 0.0001068242413364671,
1612
+ "loss": 0.9132,
1613
+ "step": 220
1614
+ },
1615
+ {
1616
+ "epoch": 1.97,
1617
+ "grad_norm": 0.35685140391438824,
1618
+ "learning_rate": 0.00010610684717178905,
1619
+ "loss": 0.9398,
1620
+ "step": 221
1621
+ },
1622
+ {
1623
+ "epoch": 1.98,
1624
+ "grad_norm": 0.27320389987223703,
1625
+ "learning_rate": 0.00010538913739616816,
1626
+ "loss": 0.857,
1627
+ "step": 222
1628
+ },
1629
+ {
1630
+ "epoch": 1.99,
1631
+ "grad_norm": 0.2324276771141761,
1632
+ "learning_rate": 0.00010467114910191289,
1633
+ "loss": 0.8546,
1634
+ "step": 223
1635
+ },
1636
+ {
1637
+ "epoch": 1.99,
1638
+ "grad_norm": 0.22820341349854167,
1639
+ "learning_rate": 0.00010395291939572593,
1640
+ "loss": 0.9301,
1641
+ "step": 224
1642
+ },
1643
+ {
1644
+ "epoch": 1.99,
1645
+ "eval_loss": 1.2246263027191162,
1646
+ "eval_runtime": 13.1981,
1647
+ "eval_samples_per_second": 22.731,
1648
+ "eval_steps_per_second": 2.879,
1649
+ "step": 224
1650
+ },
1651
+ {
1652
+ "epoch": 2.0,
1653
+ "grad_norm": 0.2289800489154315,
1654
+ "learning_rate": 0.00010323448539678653,
1655
+ "loss": 0.9922,
1656
+ "step": 225
1657
+ },
1658
+ {
1659
+ "epoch": 2.01,
1660
+ "grad_norm": 0.2673353778680862,
1661
+ "learning_rate": 0.00010251588423483205,
1662
+ "loss": 0.7779,
1663
+ "step": 226
1664
+ },
1665
+ {
1666
+ "epoch": 2.02,
1667
+ "grad_norm": 0.2420933678952559,
1668
+ "learning_rate": 0.0001017971530482392,
1669
+ "loss": 0.8044,
1670
+ "step": 227
1671
+ },
1672
+ {
1673
+ "epoch": 2.03,
1674
+ "grad_norm": 0.21799264660625498,
1675
+ "learning_rate": 0.00010107832898210439,
1676
+ "loss": 0.8773,
1677
+ "step": 228
1678
+ },
1679
+ {
1680
+ "epoch": 2.04,
1681
+ "grad_norm": 0.21443255695871016,
1682
+ "learning_rate": 0.00010035944918632429,
1683
+ "loss": 0.9031,
1684
+ "step": 229
1685
+ },
1686
+ {
1687
+ "epoch": 2.05,
1688
+ "grad_norm": 0.23983734165788242,
1689
+ "learning_rate": 9.96405508136757e-05,
1690
+ "loss": 0.9014,
1691
+ "step": 230
1692
+ },
1693
+ {
1694
+ "epoch": 2.06,
1695
+ "grad_norm": 0.27915481475799336,
1696
+ "learning_rate": 9.892167101789564e-05,
1697
+ "loss": 0.8853,
1698
+ "step": 231
1699
+ },
1700
+ {
1701
+ "epoch": 2.07,
1702
+ "grad_norm": 0.2688949371564916,
1703
+ "learning_rate": 9.820284695176082e-05,
1704
+ "loss": 0.8452,
1705
+ "step": 232
1706
+ },
1707
+ {
1708
+ "epoch": 2.07,
1709
+ "grad_norm": 0.2623278518867105,
1710
+ "learning_rate": 9.748411576516794e-05,
1711
+ "loss": 0.8612,
1712
+ "step": 233
1713
+ },
1714
+ {
1715
+ "epoch": 2.08,
1716
+ "grad_norm": 0.2710502639103885,
1717
+ "learning_rate": 9.676551460321349e-05,
1718
+ "loss": 0.8108,
1719
+ "step": 234
1720
+ },
1721
+ {
1722
+ "epoch": 2.09,
1723
+ "grad_norm": 0.282572880285737,
1724
+ "learning_rate": 9.60470806042741e-05,
1725
+ "loss": 0.7866,
1726
+ "step": 235
1727
+ },
1728
+ {
1729
+ "epoch": 2.1,
1730
+ "grad_norm": 0.2829396962922612,
1731
+ "learning_rate": 9.532885089808713e-05,
1732
+ "loss": 0.8557,
1733
+ "step": 236
1734
+ },
1735
+ {
1736
+ "epoch": 2.11,
1737
+ "grad_norm": 0.2721172338857335,
1738
+ "learning_rate": 9.461086260383187e-05,
1739
+ "loss": 0.7933,
1740
+ "step": 237
1741
+ },
1742
+ {
1743
+ "epoch": 2.12,
1744
+ "grad_norm": 0.29736638811364446,
1745
+ "learning_rate": 9.389315282821097e-05,
1746
+ "loss": 0.7674,
1747
+ "step": 238
1748
+ },
1749
+ {
1750
+ "epoch": 2.13,
1751
+ "grad_norm": 0.28571679920981263,
1752
+ "learning_rate": 9.317575866353292e-05,
1753
+ "loss": 0.7442,
1754
+ "step": 239
1755
+ },
1756
+ {
1757
+ "epoch": 2.14,
1758
+ "grad_norm": 0.264545167150173,
1759
+ "learning_rate": 9.245871718579491e-05,
1760
+ "loss": 0.8505,
1761
+ "step": 240
1762
+ },
1763
+ {
1764
+ "epoch": 2.15,
1765
+ "grad_norm": 0.30691085134027757,
1766
+ "learning_rate": 9.174206545276677e-05,
1767
+ "loss": 0.7898,
1768
+ "step": 241
1769
+ },
1770
+ {
1771
+ "epoch": 2.15,
1772
+ "grad_norm": 0.31375028121981235,
1773
+ "learning_rate": 9.102584050207578e-05,
1774
+ "loss": 0.7661,
1775
+ "step": 242
1776
+ },
1777
+ {
1778
+ "epoch": 2.16,
1779
+ "grad_norm": 0.28421530221837016,
1780
+ "learning_rate": 9.031007934929236e-05,
1781
+ "loss": 0.8328,
1782
+ "step": 243
1783
+ },
1784
+ {
1785
+ "epoch": 2.17,
1786
+ "grad_norm": 0.25601367811173414,
1787
+ "learning_rate": 8.959481898601728e-05,
1788
+ "loss": 0.8281,
1789
+ "step": 244
1790
+ },
1791
+ {
1792
+ "epoch": 2.18,
1793
+ "grad_norm": 0.2983724947729522,
1794
+ "learning_rate": 8.888009637796968e-05,
1795
+ "loss": 0.8567,
1796
+ "step": 245
1797
+ },
1798
+ {
1799
+ "epoch": 2.19,
1800
+ "grad_norm": 0.2545616786933236,
1801
+ "learning_rate": 8.81659484630768e-05,
1802
+ "loss": 0.9151,
1803
+ "step": 246
1804
+ },
1805
+ {
1806
+ "epoch": 2.2,
1807
+ "grad_norm": 0.23873712362647942,
1808
+ "learning_rate": 8.745241214956483e-05,
1809
+ "loss": 0.8818,
1810
+ "step": 247
1811
+ },
1812
+ {
1813
+ "epoch": 2.21,
1814
+ "grad_norm": 0.285331972404065,
1815
+ "learning_rate": 8.673952431405148e-05,
1816
+ "loss": 0.7983,
1817
+ "step": 248
1818
+ },
1819
+ {
1820
+ "epoch": 2.22,
1821
+ "grad_norm": 0.23897707291689843,
1822
+ "learning_rate": 8.602732179964017e-05,
1823
+ "loss": 0.8758,
1824
+ "step": 249
1825
+ },
1826
+ {
1827
+ "epoch": 2.23,
1828
+ "grad_norm": 0.2830966091447457,
1829
+ "learning_rate": 8.531584141401591e-05,
1830
+ "loss": 0.8714,
1831
+ "step": 250
1832
+ },
1833
+ {
1834
+ "epoch": 2.23,
1835
+ "grad_norm": 0.28872599217076506,
1836
+ "learning_rate": 8.4605119927543e-05,
1837
+ "loss": 0.8387,
1838
+ "step": 251
1839
+ },
1840
+ {
1841
+ "epoch": 2.24,
1842
+ "grad_norm": 0.2652236346400331,
1843
+ "learning_rate": 8.38951940713647e-05,
1844
+ "loss": 0.8232,
1845
+ "step": 252
1846
+ },
1847
+ {
1848
+ "epoch": 2.24,
1849
+ "eval_loss": 1.2432794570922852,
1850
+ "eval_runtime": 13.2405,
1851
+ "eval_samples_per_second": 22.658,
1852
+ "eval_steps_per_second": 2.87,
1853
+ "step": 252
1854
+ },
1855
+ {
1856
+ "epoch": 2.25,
1857
+ "grad_norm": 0.299978013524394,
1858
+ "learning_rate": 8.318610053550497e-05,
1859
+ "loss": 0.7321,
1860
+ "step": 253
1861
+ },
1862
+ {
1863
+ "epoch": 2.26,
1864
+ "grad_norm": 0.2740002835117391,
1865
+ "learning_rate": 8.247787596697218e-05,
1866
+ "loss": 0.7605,
1867
+ "step": 254
1868
+ },
1869
+ {
1870
+ "epoch": 2.27,
1871
+ "grad_norm": 0.2848366030132808,
1872
+ "learning_rate": 8.177055696786516e-05,
1873
+ "loss": 0.8485,
1874
+ "step": 255
1875
+ },
1876
+ {
1877
+ "epoch": 2.28,
1878
+ "grad_norm": 0.24847418856075218,
1879
+ "learning_rate": 8.106418009348157e-05,
1880
+ "loss": 0.7557,
1881
+ "step": 256
1882
+ },
1883
+ {
1884
+ "epoch": 2.29,
1885
+ "grad_norm": 0.33515508602624905,
1886
+ "learning_rate": 8.035878185042868e-05,
1887
+ "loss": 0.8015,
1888
+ "step": 257
1889
+ },
1890
+ {
1891
+ "epoch": 2.3,
1892
+ "grad_norm": 0.2905943721096322,
1893
+ "learning_rate": 7.965439869473664e-05,
1894
+ "loss": 0.8457,
1895
+ "step": 258
1896
+ },
1897
+ {
1898
+ "epoch": 2.31,
1899
+ "grad_norm": 0.3140679719552616,
1900
+ "learning_rate": 7.895106702997437e-05,
1901
+ "loss": 0.8559,
1902
+ "step": 259
1903
+ },
1904
+ {
1905
+ "epoch": 2.31,
1906
+ "grad_norm": 0.29745105018138573,
1907
+ "learning_rate": 7.824882320536814e-05,
1908
+ "loss": 0.7453,
1909
+ "step": 260
1910
+ },
1911
+ {
1912
+ "epoch": 2.32,
1913
+ "grad_norm": 0.29818631731197365,
1914
+ "learning_rate": 7.754770351392311e-05,
1915
+ "loss": 0.8354,
1916
+ "step": 261
1917
+ },
1918
+ {
1919
+ "epoch": 2.33,
1920
+ "grad_norm": 0.24721488944366407,
1921
+ "learning_rate": 7.684774419054747e-05,
1922
+ "loss": 0.7755,
1923
+ "step": 262
1924
+ },
1925
+ {
1926
+ "epoch": 2.34,
1927
+ "grad_norm": 0.31210442779019465,
1928
+ "learning_rate": 7.614898141017996e-05,
1929
+ "loss": 0.7208,
1930
+ "step": 263
1931
+ },
1932
+ {
1933
+ "epoch": 2.35,
1934
+ "grad_norm": 0.2873220240109992,
1935
+ "learning_rate": 7.54514512859201e-05,
1936
+ "loss": 0.7548,
1937
+ "step": 264
1938
+ },
1939
+ {
1940
+ "epoch": 2.36,
1941
+ "grad_norm": 0.3006634171776217,
1942
+ "learning_rate": 7.475518986716194e-05,
1943
+ "loss": 0.7566,
1944
+ "step": 265
1945
+ },
1946
+ {
1947
+ "epoch": 2.37,
1948
+ "grad_norm": 0.2799417613336026,
1949
+ "learning_rate": 7.406023313773097e-05,
1950
+ "loss": 0.727,
1951
+ "step": 266
1952
+ },
1953
+ {
1954
+ "epoch": 2.38,
1955
+ "grad_norm": 0.2451761866231664,
1956
+ "learning_rate": 7.336661701402439e-05,
1957
+ "loss": 0.9641,
1958
+ "step": 267
1959
+ },
1960
+ {
1961
+ "epoch": 2.39,
1962
+ "grad_norm": 0.305202611125298,
1963
+ "learning_rate": 7.267437734315492e-05,
1964
+ "loss": 0.7891,
1965
+ "step": 268
1966
+ },
1967
+ {
1968
+ "epoch": 2.39,
1969
+ "grad_norm": 0.29107717848747816,
1970
+ "learning_rate": 7.198354990109805e-05,
1971
+ "loss": 0.9032,
1972
+ "step": 269
1973
+ },
1974
+ {
1975
+ "epoch": 2.4,
1976
+ "grad_norm": 0.2688898665176787,
1977
+ "learning_rate": 7.129417039084333e-05,
1978
+ "loss": 0.8416,
1979
+ "step": 270
1980
+ },
1981
+ {
1982
+ "epoch": 2.41,
1983
+ "grad_norm": 0.2814206029778395,
1984
+ "learning_rate": 7.060627444054893e-05,
1985
+ "loss": 0.8443,
1986
+ "step": 271
1987
+ },
1988
+ {
1989
+ "epoch": 2.42,
1990
+ "grad_norm": 0.2862094867555512,
1991
+ "learning_rate": 6.99198976017005e-05,
1992
+ "loss": 0.8271,
1993
+ "step": 272
1994
+ },
1995
+ {
1996
+ "epoch": 2.43,
1997
+ "grad_norm": 0.3214647340394826,
1998
+ "learning_rate": 6.923507534727373e-05,
1999
+ "loss": 0.7793,
2000
+ "step": 273
2001
+ },
2002
+ {
2003
+ "epoch": 2.44,
2004
+ "grad_norm": 0.3033659714564417,
2005
+ "learning_rate": 6.855184306990106e-05,
2006
+ "loss": 0.7856,
2007
+ "step": 274
2008
+ },
2009
+ {
2010
+ "epoch": 2.45,
2011
+ "grad_norm": 0.3024382342577774,
2012
+ "learning_rate": 6.78702360800425e-05,
2013
+ "loss": 0.8633,
2014
+ "step": 275
2015
+ },
2016
+ {
2017
+ "epoch": 2.46,
2018
+ "grad_norm": 0.25803598196729505,
2019
+ "learning_rate": 6.719028960416098e-05,
2020
+ "loss": 0.8428,
2021
+ "step": 276
2022
+ },
2023
+ {
2024
+ "epoch": 2.47,
2025
+ "grad_norm": 0.35469202971401803,
2026
+ "learning_rate": 6.651203878290139e-05,
2027
+ "loss": 0.8665,
2028
+ "step": 277
2029
+ },
2030
+ {
2031
+ "epoch": 2.47,
2032
+ "grad_norm": 0.3122516837597691,
2033
+ "learning_rate": 6.583551866927475e-05,
2034
+ "loss": 0.8787,
2035
+ "step": 278
2036
+ },
2037
+ {
2038
+ "epoch": 2.48,
2039
+ "grad_norm": 0.3305470786367901,
2040
+ "learning_rate": 6.516076422684654e-05,
2041
+ "loss": 0.8765,
2042
+ "step": 279
2043
+ },
2044
+ {
2045
+ "epoch": 2.49,
2046
+ "grad_norm": 0.3324622666488467,
2047
+ "learning_rate": 6.448781032792972e-05,
2048
+ "loss": 0.8318,
2049
+ "step": 280
2050
+ },
2051
+ {
2052
+ "epoch": 2.49,
2053
+ "eval_loss": 1.2546111345291138,
2054
+ "eval_runtime": 13.2379,
2055
+ "eval_samples_per_second": 22.662,
2056
+ "eval_steps_per_second": 2.871,
2057
+ "step": 280
2058
+ },
2059
+ {
2060
+ "epoch": 2.5,
2061
+ "grad_norm": 0.342341713579355,
2062
+ "learning_rate": 6.381669175178248e-05,
2063
+ "loss": 0.9517,
2064
+ "step": 281
2065
+ },
2066
+ {
2067
+ "epoch": 2.51,
2068
+ "grad_norm": 0.33913458352374665,
2069
+ "learning_rate": 6.31474431828108e-05,
2070
+ "loss": 0.8564,
2071
+ "step": 282
2072
+ },
2073
+ {
2074
+ "epoch": 2.52,
2075
+ "grad_norm": 0.30528689383480295,
2076
+ "learning_rate": 6.248009920877592e-05,
2077
+ "loss": 0.8199,
2078
+ "step": 283
2079
+ },
2080
+ {
2081
+ "epoch": 2.53,
2082
+ "grad_norm": 0.29698648367254743,
2083
+ "learning_rate": 6.181469431900672e-05,
2084
+ "loss": 0.785,
2085
+ "step": 284
2086
+ },
2087
+ {
2088
+ "epoch": 2.54,
2089
+ "grad_norm": 0.32239262939282626,
2090
+ "learning_rate": 6.115126290261745e-05,
2091
+ "loss": 0.7794,
2092
+ "step": 285
2093
+ },
2094
+ {
2095
+ "epoch": 2.55,
2096
+ "grad_norm": 0.2694595905080167,
2097
+ "learning_rate": 6.048983924673022e-05,
2098
+ "loss": 0.8056,
2099
+ "step": 286
2100
+ },
2101
+ {
2102
+ "epoch": 2.55,
2103
+ "grad_norm": 0.3045496751154443,
2104
+ "learning_rate": 5.983045753470308e-05,
2105
+ "loss": 0.8164,
2106
+ "step": 287
2107
+ },
2108
+ {
2109
+ "epoch": 2.56,
2110
+ "grad_norm": 0.2927868214627918,
2111
+ "learning_rate": 5.917315184436345e-05,
2112
+ "loss": 0.8358,
2113
+ "step": 288
2114
+ },
2115
+ {
2116
+ "epoch": 2.57,
2117
+ "grad_norm": 0.2931914055644858,
2118
+ "learning_rate": 5.851795614624682e-05,
2119
+ "loss": 0.8011,
2120
+ "step": 289
2121
+ },
2122
+ {
2123
+ "epoch": 2.58,
2124
+ "grad_norm": 0.3158716819379082,
2125
+ "learning_rate": 5.786490430184115e-05,
2126
+ "loss": 0.8332,
2127
+ "step": 290
2128
+ },
2129
+ {
2130
+ "epoch": 2.59,
2131
+ "grad_norm": 0.3482519147352008,
2132
+ "learning_rate": 5.72140300618369e-05,
2133
+ "loss": 0.7621,
2134
+ "step": 291
2135
+ },
2136
+ {
2137
+ "epoch": 2.6,
2138
+ "grad_norm": 0.28652801822050894,
2139
+ "learning_rate": 5.656536706438267e-05,
2140
+ "loss": 0.77,
2141
+ "step": 292
2142
+ },
2143
+ {
2144
+ "epoch": 2.61,
2145
+ "grad_norm": 0.29691290613407717,
2146
+ "learning_rate": 5.591894883334667e-05,
2147
+ "loss": 0.9394,
2148
+ "step": 293
2149
+ },
2150
+ {
2151
+ "epoch": 2.62,
2152
+ "grad_norm": 0.26699581966985203,
2153
+ "learning_rate": 5.5274808776584367e-05,
2154
+ "loss": 0.7918,
2155
+ "step": 294
2156
+ },
2157
+ {
2158
+ "epoch": 2.63,
2159
+ "grad_norm": 0.2926923719762685,
2160
+ "learning_rate": 5.463298018421171e-05,
2161
+ "loss": 0.8723,
2162
+ "step": 295
2163
+ },
2164
+ {
2165
+ "epoch": 2.64,
2166
+ "grad_norm": 0.3403087263187063,
2167
+ "learning_rate": 5.399349622688479e-05,
2168
+ "loss": 0.8097,
2169
+ "step": 296
2170
+ },
2171
+ {
2172
+ "epoch": 2.64,
2173
+ "grad_norm": 0.34261233464532476,
2174
+ "learning_rate": 5.335638995408545e-05,
2175
+ "loss": 0.9032,
2176
+ "step": 297
2177
+ },
2178
+ {
2179
+ "epoch": 2.65,
2180
+ "grad_norm": 0.31315234759634086,
2181
+ "learning_rate": 5.272169429241325e-05,
2182
+ "loss": 0.82,
2183
+ "step": 298
2184
+ },
2185
+ {
2186
+ "epoch": 2.66,
2187
+ "grad_norm": 0.3179759425444047,
2188
+ "learning_rate": 5.208944204388377e-05,
2189
+ "loss": 0.8864,
2190
+ "step": 299
2191
+ },
2192
+ {
2193
+ "epoch": 2.67,
2194
+ "grad_norm": 0.3121296356843828,
2195
+ "learning_rate": 5.145966588423341e-05,
2196
+ "loss": 0.8258,
2197
+ "step": 300
2198
+ },
2199
+ {
2200
+ "epoch": 2.68,
2201
+ "grad_norm": 0.268436849924173,
2202
+ "learning_rate": 5.0832398361230596e-05,
2203
+ "loss": 0.8906,
2204
+ "step": 301
2205
+ },
2206
+ {
2207
+ "epoch": 2.69,
2208
+ "grad_norm": 0.2961161602467319,
2209
+ "learning_rate": 5.020767189299369e-05,
2210
+ "loss": 0.8828,
2211
+ "step": 302
2212
+ },
2213
+ {
2214
+ "epoch": 2.7,
2215
+ "grad_norm": 0.27743957099992345,
2216
+ "learning_rate": 4.9585518766315496e-05,
2217
+ "loss": 0.8251,
2218
+ "step": 303
2219
+ },
2220
+ {
2221
+ "epoch": 2.71,
2222
+ "grad_norm": 0.2949909861852426,
2223
+ "learning_rate": 4.896597113499479e-05,
2224
+ "loss": 0.7911,
2225
+ "step": 304
2226
+ },
2227
+ {
2228
+ "epoch": 2.72,
2229
+ "grad_norm": 0.3161115451278363,
2230
+ "learning_rate": 4.834906101817438e-05,
2231
+ "loss": 0.8157,
2232
+ "step": 305
2233
+ },
2234
+ {
2235
+ "epoch": 2.72,
2236
+ "grad_norm": 0.28720077046065867,
2237
+ "learning_rate": 4.773482029868657e-05,
2238
+ "loss": 0.82,
2239
+ "step": 306
2240
+ },
2241
+ {
2242
+ "epoch": 2.73,
2243
+ "grad_norm": 0.4045319357608716,
2244
+ "learning_rate": 4.712328072140505e-05,
2245
+ "loss": 0.8414,
2246
+ "step": 307
2247
+ },
2248
+ {
2249
+ "epoch": 2.74,
2250
+ "grad_norm": 0.3070232288390269,
2251
+ "learning_rate": 4.651447389160458e-05,
2252
+ "loss": 0.8427,
2253
+ "step": 308
2254
+ },
2255
+ {
2256
+ "epoch": 2.74,
2257
+ "eval_loss": 1.2574400901794434,
2258
+ "eval_runtime": 13.2473,
2259
+ "eval_samples_per_second": 22.646,
2260
+ "eval_steps_per_second": 2.869,
2261
+ "step": 308
2262
+ },
2263
+ {
2264
+ "epoch": 2.75,
2265
+ "grad_norm": 0.3214782806968351,
2266
+ "learning_rate": 4.5908431273327436e-05,
2267
+ "loss": 0.8469,
2268
+ "step": 309
2269
+ },
2270
+ {
2271
+ "epoch": 2.76,
2272
+ "grad_norm": 0.24241410698156174,
2273
+ "learning_rate": 4.530518418775733e-05,
2274
+ "loss": 0.8346,
2275
+ "step": 310
2276
+ },
2277
+ {
2278
+ "epoch": 2.77,
2279
+ "grad_norm": 0.3303263594210879,
2280
+ "learning_rate": 4.470476381160065e-05,
2281
+ "loss": 0.8298,
2282
+ "step": 311
2283
+ },
2284
+ {
2285
+ "epoch": 2.78,
2286
+ "grad_norm": 0.30711900849760865,
2287
+ "learning_rate": 4.4107201175475275e-05,
2288
+ "loss": 0.789,
2289
+ "step": 312
2290
+ },
2291
+ {
2292
+ "epoch": 2.79,
2293
+ "grad_norm": 0.2954465859389713,
2294
+ "learning_rate": 4.351252716230685e-05,
2295
+ "loss": 0.8029,
2296
+ "step": 313
2297
+ },
2298
+ {
2299
+ "epoch": 2.8,
2300
+ "grad_norm": 0.29925087091531116,
2301
+ "learning_rate": 4.292077250573266e-05,
2302
+ "loss": 0.8633,
2303
+ "step": 314
2304
+ },
2305
+ {
2306
+ "epoch": 2.8,
2307
+ "grad_norm": 0.3177611223775825,
2308
+ "learning_rate": 4.2331967788513295e-05,
2309
+ "loss": 0.76,
2310
+ "step": 315
2311
+ },
2312
+ {
2313
+ "epoch": 2.81,
2314
+ "grad_norm": 0.28642407848269513,
2315
+ "learning_rate": 4.174614344095213e-05,
2316
+ "loss": 0.823,
2317
+ "step": 316
2318
+ },
2319
+ {
2320
+ "epoch": 2.82,
2321
+ "grad_norm": 0.3243224656005062,
2322
+ "learning_rate": 4.116332973932256e-05,
2323
+ "loss": 0.7831,
2324
+ "step": 317
2325
+ },
2326
+ {
2327
+ "epoch": 2.83,
2328
+ "grad_norm": 0.34877334027822726,
2329
+ "learning_rate": 4.058355680430337e-05,
2330
+ "loss": 0.899,
2331
+ "step": 318
2332
+ },
2333
+ {
2334
+ "epoch": 2.84,
2335
+ "grad_norm": 0.28640325479143114,
2336
+ "learning_rate": 4.0006854599421926e-05,
2337
+ "loss": 0.8292,
2338
+ "step": 319
2339
+ },
2340
+ {
2341
+ "epoch": 2.85,
2342
+ "grad_norm": 0.3135316628014535,
2343
+ "learning_rate": 3.943325292950579e-05,
2344
+ "loss": 0.8731,
2345
+ "step": 320
2346
+ },
2347
+ {
2348
+ "epoch": 2.86,
2349
+ "grad_norm": 0.2949970604257085,
2350
+ "learning_rate": 3.886278143914219e-05,
2351
+ "loss": 0.8402,
2352
+ "step": 321
2353
+ },
2354
+ {
2355
+ "epoch": 2.87,
2356
+ "grad_norm": 0.30057896586780075,
2357
+ "learning_rate": 3.829546961114607e-05,
2358
+ "loss": 0.7713,
2359
+ "step": 322
2360
+ },
2361
+ {
2362
+ "epoch": 2.88,
2363
+ "grad_norm": 0.3558574270285126,
2364
+ "learning_rate": 3.773134676503629e-05,
2365
+ "loss": 0.8435,
2366
+ "step": 323
2367
+ },
2368
+ {
2369
+ "epoch": 2.88,
2370
+ "grad_norm": 0.29115288332943334,
2371
+ "learning_rate": 3.7170442055520415e-05,
2372
+ "loss": 0.9022,
2373
+ "step": 324
2374
+ },
2375
+ {
2376
+ "epoch": 2.89,
2377
+ "grad_norm": 0.3192074718527619,
2378
+ "learning_rate": 3.661278447098789e-05,
2379
+ "loss": 0.7662,
2380
+ "step": 325
2381
+ },
2382
+ {
2383
+ "epoch": 2.9,
2384
+ "grad_norm": 0.33335742888185405,
2385
+ "learning_rate": 3.605840283201195e-05,
2386
+ "loss": 0.8111,
2387
+ "step": 326
2388
+ },
2389
+ {
2390
+ "epoch": 2.91,
2391
+ "grad_norm": 0.29748212071395186,
2392
+ "learning_rate": 3.550732578986006e-05,
2393
+ "loss": 0.7543,
2394
+ "step": 327
2395
+ },
2396
+ {
2397
+ "epoch": 2.92,
2398
+ "grad_norm": 0.3680409192627914,
2399
+ "learning_rate": 3.495958182501325e-05,
2400
+ "loss": 0.8124,
2401
+ "step": 328
2402
+ },
2403
+ {
2404
+ "epoch": 2.93,
2405
+ "grad_norm": 0.27807302364345643,
2406
+ "learning_rate": 3.441519924569408e-05,
2407
+ "loss": 0.7856,
2408
+ "step": 329
2409
+ },
2410
+ {
2411
+ "epoch": 2.94,
2412
+ "grad_norm": 0.3050855823733691,
2413
+ "learning_rate": 3.387420618640379e-05,
2414
+ "loss": 0.8506,
2415
+ "step": 330
2416
+ },
2417
+ {
2418
+ "epoch": 2.95,
2419
+ "grad_norm": 0.3322620263029238,
2420
+ "learning_rate": 3.3336630606468134e-05,
2421
+ "loss": 0.8771,
2422
+ "step": 331
2423
+ },
2424
+ {
2425
+ "epoch": 2.96,
2426
+ "grad_norm": 0.3112008867427982,
2427
+ "learning_rate": 3.280250028859248e-05,
2428
+ "loss": 0.7785,
2429
+ "step": 332
2430
+ },
2431
+ {
2432
+ "epoch": 2.96,
2433
+ "grad_norm": 0.2839548329095365,
2434
+ "learning_rate": 3.227184283742591e-05,
2435
+ "loss": 0.9153,
2436
+ "step": 333
2437
+ },
2438
+ {
2439
+ "epoch": 2.97,
2440
+ "grad_norm": 0.34615397822650606,
2441
+ "learning_rate": 3.174468567813461e-05,
2442
+ "loss": 0.7753,
2443
+ "step": 334
2444
+ },
2445
+ {
2446
+ "epoch": 2.98,
2447
+ "grad_norm": 0.34691866307772695,
2448
+ "learning_rate": 3.122105605498442e-05,
2449
+ "loss": 0.851,
2450
+ "step": 335
2451
+ },
2452
+ {
2453
+ "epoch": 2.99,
2454
+ "grad_norm": 0.296369624391198,
2455
+ "learning_rate": 3.070098102993302e-05,
2456
+ "loss": 0.8572,
2457
+ "step": 336
2458
+ },
2459
+ {
2460
+ "epoch": 2.99,
2461
+ "eval_loss": 1.2511259317398071,
2462
+ "eval_runtime": 13.2202,
2463
+ "eval_samples_per_second": 22.692,
2464
+ "eval_steps_per_second": 2.874,
2465
+ "step": 336
2466
+ },
2467
+ {
2468
+ "epoch": 3.0,
2469
+ "grad_norm": 0.2960426809914107,
2470
+ "learning_rate": 3.018448748123097e-05,
2471
+ "loss": 0.8664,
2472
+ "step": 337
2473
+ },
2474
+ {
2475
+ "epoch": 3.01,
2476
+ "grad_norm": 0.3213684656412904,
2477
+ "learning_rate": 2.9671602102032926e-05,
2478
+ "loss": 0.7387,
2479
+ "step": 338
2480
+ },
2481
+ {
2482
+ "epoch": 3.02,
2483
+ "grad_norm": 0.3057515564517862,
2484
+ "learning_rate": 2.9162351399017963e-05,
2485
+ "loss": 0.767,
2486
+ "step": 339
2487
+ },
2488
+ {
2489
+ "epoch": 3.03,
2490
+ "grad_norm": 0.31163087624473346,
2491
+ "learning_rate": 2.8656761691019673e-05,
2492
+ "loss": 0.8084,
2493
+ "step": 340
2494
+ },
2495
+ {
2496
+ "epoch": 3.04,
2497
+ "grad_norm": 0.29945884165692627,
2498
+ "learning_rate": 2.8154859107665987e-05,
2499
+ "loss": 0.9033,
2500
+ "step": 341
2501
+ },
2502
+ {
2503
+ "epoch": 3.04,
2504
+ "grad_norm": 0.32235895597138414,
2505
+ "learning_rate": 2.7656669588028762e-05,
2506
+ "loss": 0.7144,
2507
+ "step": 342
2508
+ },
2509
+ {
2510
+ "epoch": 3.05,
2511
+ "grad_norm": 0.3458958643468077,
2512
+ "learning_rate": 2.7162218879283176e-05,
2513
+ "loss": 0.7426,
2514
+ "step": 343
2515
+ },
2516
+ {
2517
+ "epoch": 3.06,
2518
+ "grad_norm": 0.3073811670129139,
2519
+ "learning_rate": 2.667153253537713e-05,
2520
+ "loss": 0.723,
2521
+ "step": 344
2522
+ },
2523
+ {
2524
+ "epoch": 3.07,
2525
+ "grad_norm": 0.3223615792503137,
2526
+ "learning_rate": 2.618463591571052e-05,
2527
+ "loss": 0.6815,
2528
+ "step": 345
2529
+ },
2530
+ {
2531
+ "epoch": 3.08,
2532
+ "grad_norm": 0.357176712253696,
2533
+ "learning_rate": 2.570155418382473e-05,
2534
+ "loss": 0.7286,
2535
+ "step": 346
2536
+ },
2537
+ {
2538
+ "epoch": 3.09,
2539
+ "grad_norm": 0.29547503050650586,
2540
+ "learning_rate": 2.5222312306101925e-05,
2541
+ "loss": 0.7895,
2542
+ "step": 347
2543
+ },
2544
+ {
2545
+ "epoch": 3.1,
2546
+ "grad_norm": 0.37115835330190844,
2547
+ "learning_rate": 2.474693505047504e-05,
2548
+ "loss": 0.8722,
2549
+ "step": 348
2550
+ },
2551
+ {
2552
+ "epoch": 3.11,
2553
+ "grad_norm": 0.3840299049618982,
2554
+ "learning_rate": 2.427544698514753e-05,
2555
+ "loss": 0.7022,
2556
+ "step": 349
2557
+ },
2558
+ {
2559
+ "epoch": 3.12,
2560
+ "grad_norm": 0.33738326420366743,
2561
+ "learning_rate": 2.3807872477323733e-05,
2562
+ "loss": 0.7731,
2563
+ "step": 350
2564
+ },
2565
+ {
2566
+ "epoch": 3.12,
2567
+ "grad_norm": 0.35407291134427865,
2568
+ "learning_rate": 2.334423569194948e-05,
2569
+ "loss": 0.7407,
2570
+ "step": 351
2571
+ },
2572
+ {
2573
+ "epoch": 3.13,
2574
+ "grad_norm": 0.2589965276614251,
2575
+ "learning_rate": 2.288456059046331e-05,
2576
+ "loss": 0.865,
2577
+ "step": 352
2578
+ },
2579
+ {
2580
+ "epoch": 3.14,
2581
+ "grad_norm": 0.3521332875577516,
2582
+ "learning_rate": 2.242887092955801e-05,
2583
+ "loss": 0.655,
2584
+ "step": 353
2585
+ },
2586
+ {
2587
+ "epoch": 3.15,
2588
+ "grad_norm": 0.33409347759889046,
2589
+ "learning_rate": 2.1977190259952883e-05,
2590
+ "loss": 0.7536,
2591
+ "step": 354
2592
+ },
2593
+ {
2594
+ "epoch": 3.16,
2595
+ "grad_norm": 0.38883294070164465,
2596
+ "learning_rate": 2.1529541925176555e-05,
2597
+ "loss": 0.7435,
2598
+ "step": 355
2599
+ },
2600
+ {
2601
+ "epoch": 3.17,
2602
+ "grad_norm": 0.3513324514694806,
2603
+ "learning_rate": 2.1085949060360654e-05,
2604
+ "loss": 0.7405,
2605
+ "step": 356
2606
+ },
2607
+ {
2608
+ "epoch": 3.18,
2609
+ "grad_norm": 0.3391182488874308,
2610
+ "learning_rate": 2.064643459104405e-05,
2611
+ "loss": 0.7737,
2612
+ "step": 357
2613
+ },
2614
+ {
2615
+ "epoch": 3.19,
2616
+ "grad_norm": 0.3647814711811327,
2617
+ "learning_rate": 2.0211021231988102e-05,
2618
+ "loss": 0.7095,
2619
+ "step": 358
2620
+ },
2621
+ {
2622
+ "epoch": 3.2,
2623
+ "grad_norm": 0.35539668264402535,
2624
+ "learning_rate": 1.977973148600266e-05,
2625
+ "loss": 0.7543,
2626
+ "step": 359
2627
+ },
2628
+ {
2629
+ "epoch": 3.2,
2630
+ "grad_norm": 0.30454971181182305,
2631
+ "learning_rate": 1.935258764278314e-05,
2632
+ "loss": 0.7897,
2633
+ "step": 360
2634
+ },
2635
+ {
2636
+ "epoch": 3.21,
2637
+ "grad_norm": 0.33290039075033256,
2638
+ "learning_rate": 1.8929611777758526e-05,
2639
+ "loss": 0.6976,
2640
+ "step": 361
2641
+ },
2642
+ {
2643
+ "epoch": 3.22,
2644
+ "grad_norm": 0.28252566634530724,
2645
+ "learning_rate": 1.851082575095051e-05,
2646
+ "loss": 0.8688,
2647
+ "step": 362
2648
+ },
2649
+ {
2650
+ "epoch": 3.23,
2651
+ "grad_norm": 0.38585709417657277,
2652
+ "learning_rate": 1.8096251205843684e-05,
2653
+ "loss": 0.8361,
2654
+ "step": 363
2655
+ },
2656
+ {
2657
+ "epoch": 3.24,
2658
+ "grad_norm": 0.3372165483048113,
2659
+ "learning_rate": 1.7685909568267033e-05,
2660
+ "loss": 0.7818,
2661
+ "step": 364
2662
+ },
2663
+ {
2664
+ "epoch": 3.24,
2665
+ "eval_loss": 1.2727638483047485,
2666
+ "eval_runtime": 13.2462,
2667
+ "eval_samples_per_second": 22.648,
2668
+ "eval_steps_per_second": 2.869,
2669
+ "step": 364
2670
+ },
2671
+ {
2672
+ "epoch": 3.25,
2673
+ "grad_norm": 0.3250536223337791,
2674
+ "learning_rate": 1.7279822045286576e-05,
2675
+ "loss": 0.7973,
2676
+ "step": 365
2677
+ },
2678
+ {
2679
+ "epoch": 3.26,
2680
+ "grad_norm": 0.3593434237000891,
2681
+ "learning_rate": 1.6878009624109313e-05,
2682
+ "loss": 0.7015,
2683
+ "step": 366
2684
+ },
2685
+ {
2686
+ "epoch": 3.27,
2687
+ "grad_norm": 0.3197427893489943,
2688
+ "learning_rate": 1.648049307099874e-05,
2689
+ "loss": 0.7536,
2690
+ "step": 367
2691
+ },
2692
+ {
2693
+ "epoch": 3.28,
2694
+ "grad_norm": 0.36529609852202527,
2695
+ "learning_rate": 1.6087292930201394e-05,
2696
+ "loss": 0.7487,
2697
+ "step": 368
2698
+ },
2699
+ {
2700
+ "epoch": 3.28,
2701
+ "grad_norm": 0.25007649085986594,
2702
+ "learning_rate": 1.569842952288527e-05,
2703
+ "loss": 0.8906,
2704
+ "step": 369
2705
+ },
2706
+ {
2707
+ "epoch": 3.29,
2708
+ "grad_norm": 0.36329388340138336,
2709
+ "learning_rate": 1.5313922946089486e-05,
2710
+ "loss": 0.7645,
2711
+ "step": 370
2712
+ },
2713
+ {
2714
+ "epoch": 3.3,
2715
+ "grad_norm": 0.35241947629057724,
2716
+ "learning_rate": 1.4933793071685732e-05,
2717
+ "loss": 0.8134,
2718
+ "step": 371
2719
+ },
2720
+ {
2721
+ "epoch": 3.31,
2722
+ "grad_norm": 0.3664249862728154,
2723
+ "learning_rate": 1.4558059545351143e-05,
2724
+ "loss": 0.7328,
2725
+ "step": 372
2726
+ },
2727
+ {
2728
+ "epoch": 3.32,
2729
+ "grad_norm": 0.29196433505411595,
2730
+ "learning_rate": 1.4186741785553115e-05,
2731
+ "loss": 0.7608,
2732
+ "step": 373
2733
+ },
2734
+ {
2735
+ "epoch": 3.33,
2736
+ "grad_norm": 0.2923688341161706,
2737
+ "learning_rate": 1.3819858982545598e-05,
2738
+ "loss": 0.7696,
2739
+ "step": 374
2740
+ },
2741
+ {
2742
+ "epoch": 3.34,
2743
+ "grad_norm": 0.3520285590111714,
2744
+ "learning_rate": 1.3457430097377421e-05,
2745
+ "loss": 0.7871,
2746
+ "step": 375
2747
+ },
2748
+ {
2749
+ "epoch": 3.35,
2750
+ "grad_norm": 0.30838315755571466,
2751
+ "learning_rate": 1.3099473860912326e-05,
2752
+ "loss": 0.7398,
2753
+ "step": 376
2754
+ },
2755
+ {
2756
+ "epoch": 3.36,
2757
+ "grad_norm": 0.327647793123604,
2758
+ "learning_rate": 1.2746008772860884e-05,
2759
+ "loss": 0.7974,
2760
+ "step": 377
2761
+ },
2762
+ {
2763
+ "epoch": 3.36,
2764
+ "grad_norm": 0.29911511172677985,
2765
+ "learning_rate": 1.2397053100824463e-05,
2766
+ "loss": 0.8535,
2767
+ "step": 378
2768
+ },
2769
+ {
2770
+ "epoch": 3.37,
2771
+ "grad_norm": 0.34600894138601895,
2772
+ "learning_rate": 1.2052624879351104e-05,
2773
+ "loss": 0.6872,
2774
+ "step": 379
2775
+ },
2776
+ {
2777
+ "epoch": 3.38,
2778
+ "grad_norm": 0.2993988371658933,
2779
+ "learning_rate": 1.1712741909003444e-05,
2780
+ "loss": 0.8554,
2781
+ "step": 380
2782
+ },
2783
+ {
2784
+ "epoch": 3.39,
2785
+ "grad_norm": 0.34130407502289717,
2786
+ "learning_rate": 1.1377421755438832e-05,
2787
+ "loss": 0.9014,
2788
+ "step": 381
2789
+ },
2790
+ {
2791
+ "epoch": 3.4,
2792
+ "grad_norm": 0.33654746414289566,
2793
+ "learning_rate": 1.1046681748501408e-05,
2794
+ "loss": 0.853,
2795
+ "step": 382
2796
+ },
2797
+ {
2798
+ "epoch": 3.41,
2799
+ "grad_norm": 0.32172878518370435,
2800
+ "learning_rate": 1.0720538981326556e-05,
2801
+ "loss": 0.7594,
2802
+ "step": 383
2803
+ },
2804
+ {
2805
+ "epoch": 3.42,
2806
+ "grad_norm": 0.3211202670840339,
2807
+ "learning_rate": 1.0399010309457457e-05,
2808
+ "loss": 0.8017,
2809
+ "step": 384
2810
+ },
2811
+ {
2812
+ "epoch": 3.43,
2813
+ "grad_norm": 0.31506066245322806,
2814
+ "learning_rate": 1.0082112349974016e-05,
2815
+ "loss": 0.7279,
2816
+ "step": 385
2817
+ },
2818
+ {
2819
+ "epoch": 3.44,
2820
+ "grad_norm": 0.33655604261545546,
2821
+ "learning_rate": 9.76986148063398e-06,
2822
+ "loss": 0.8117,
2823
+ "step": 386
2824
+ },
2825
+ {
2826
+ "epoch": 3.45,
2827
+ "grad_norm": 0.34046018532794836,
2828
+ "learning_rate": 9.462273839026624e-06,
2829
+ "loss": 0.7242,
2830
+ "step": 387
2831
+ },
2832
+ {
2833
+ "epoch": 3.45,
2834
+ "grad_norm": 0.36645383790153846,
2835
+ "learning_rate": 9.159365321738655e-06,
2836
+ "loss": 0.6773,
2837
+ "step": 388
2838
+ },
2839
+ {
2840
+ "epoch": 3.46,
2841
+ "grad_norm": 0.29937594196593476,
2842
+ "learning_rate": 8.861151583532656e-06,
2843
+ "loss": 0.8557,
2844
+ "step": 389
2845
+ },
2846
+ {
2847
+ "epoch": 3.47,
2848
+ "grad_norm": 0.382087527071458,
2849
+ "learning_rate": 8.56764803653809e-06,
2850
+ "loss": 0.8144,
2851
+ "step": 390
2852
+ },
2853
+ {
2854
+ "epoch": 3.48,
2855
+ "grad_norm": 0.37165100019020914,
2856
+ "learning_rate": 8.278869849454718e-06,
2857
+ "loss": 0.8668,
2858
+ "step": 391
2859
+ },
2860
+ {
2861
+ "epoch": 3.49,
2862
+ "grad_norm": 0.29949583615336506,
2863
+ "learning_rate": 7.994831946768622e-06,
2864
+ "loss": 0.6793,
2865
+ "step": 392
2866
+ },
2867
+ {
2868
+ "epoch": 3.49,
2869
+ "eval_loss": 1.2786916494369507,
2870
+ "eval_runtime": 13.2527,
2871
+ "eval_samples_per_second": 22.637,
2872
+ "eval_steps_per_second": 2.867,
2873
+ "step": 392
2874
+ },
2875
+ {
2876
+ "epoch": 3.5,
2877
+ "grad_norm": 0.3128750696018338,
2878
+ "learning_rate": 7.715549007981027e-06,
2879
+ "loss": 0.7723,
2880
+ "step": 393
2881
+ },
2882
+ {
2883
+ "epoch": 3.51,
2884
+ "grad_norm": 0.3036786519151417,
2885
+ "learning_rate": 7.441035466849489e-06,
2886
+ "loss": 0.7668,
2887
+ "step": 394
2888
+ },
2889
+ {
2890
+ "epoch": 3.52,
2891
+ "grad_norm": 0.3723258995422837,
2892
+ "learning_rate": 7.171305510642023e-06,
2893
+ "loss": 0.7493,
2894
+ "step": 395
2895
+ },
2896
+ {
2897
+ "epoch": 3.53,
2898
+ "grad_norm": 0.34640959843456987,
2899
+ "learning_rate": 6.906373079403849e-06,
2900
+ "loss": 0.7326,
2901
+ "step": 396
2902
+ },
2903
+ {
2904
+ "epoch": 3.53,
2905
+ "grad_norm": 0.3708769315457807,
2906
+ "learning_rate": 6.646251865236997e-06,
2907
+ "loss": 0.7532,
2908
+ "step": 397
2909
+ },
2910
+ {
2911
+ "epoch": 3.54,
2912
+ "grad_norm": 0.3204533685892251,
2913
+ "learning_rate": 6.390955311592617e-06,
2914
+ "loss": 0.7287,
2915
+ "step": 398
2916
+ },
2917
+ {
2918
+ "epoch": 3.55,
2919
+ "grad_norm": 0.32625233919759344,
2920
+ "learning_rate": 6.140496612576241e-06,
2921
+ "loss": 0.7138,
2922
+ "step": 399
2923
+ },
2924
+ {
2925
+ "epoch": 3.56,
2926
+ "grad_norm": 0.30531644707337335,
2927
+ "learning_rate": 5.8948887122658335e-06,
2928
+ "loss": 0.7123,
2929
+ "step": 400
2930
+ },
2931
+ {
2932
+ "epoch": 3.57,
2933
+ "grad_norm": 0.33767502582039044,
2934
+ "learning_rate": 5.65414430404293e-06,
2935
+ "loss": 0.797,
2936
+ "step": 401
2937
+ },
2938
+ {
2939
+ "epoch": 3.58,
2940
+ "grad_norm": 0.3282428030443849,
2941
+ "learning_rate": 5.418275829936537e-06,
2942
+ "loss": 0.8456,
2943
+ "step": 402
2944
+ },
2945
+ {
2946
+ "epoch": 3.59,
2947
+ "grad_norm": 0.3532395206693705,
2948
+ "learning_rate": 5.187295479980136e-06,
2949
+ "loss": 0.7484,
2950
+ "step": 403
2951
+ },
2952
+ {
2953
+ "epoch": 3.6,
2954
+ "grad_norm": 0.32556237019334716,
2955
+ "learning_rate": 4.961215191581692e-06,
2956
+ "loss": 0.7909,
2957
+ "step": 404
2958
+ },
2959
+ {
2960
+ "epoch": 3.61,
2961
+ "grad_norm": 0.34045978047642994,
2962
+ "learning_rate": 4.740046648906682e-06,
2963
+ "loss": 0.7618,
2964
+ "step": 405
2965
+ },
2966
+ {
2967
+ "epoch": 3.61,
2968
+ "grad_norm": 0.28937387449733615,
2969
+ "learning_rate": 4.523801282274287e-06,
2970
+ "loss": 0.8292,
2971
+ "step": 406
2972
+ },
2973
+ {
2974
+ "epoch": 3.62,
2975
+ "grad_norm": 0.3160933371902765,
2976
+ "learning_rate": 4.312490267566616e-06,
2977
+ "loss": 0.7755,
2978
+ "step": 407
2979
+ },
2980
+ {
2981
+ "epoch": 3.63,
2982
+ "grad_norm": 0.31618578023192107,
2983
+ "learning_rate": 4.106124525651123e-06,
2984
+ "loss": 0.8033,
2985
+ "step": 408
2986
+ },
2987
+ {
2988
+ "epoch": 3.64,
2989
+ "grad_norm": 0.3105026069614601,
2990
+ "learning_rate": 3.904714721816228e-06,
2991
+ "loss": 0.7873,
2992
+ "step": 409
2993
+ },
2994
+ {
2995
+ "epoch": 3.65,
2996
+ "grad_norm": 0.34709823487491576,
2997
+ "learning_rate": 3.7082712652200867e-06,
2998
+ "loss": 0.7882,
2999
+ "step": 410
3000
+ },
3001
+ {
3002
+ "epoch": 3.66,
3003
+ "grad_norm": 0.3349684333518626,
3004
+ "learning_rate": 3.516804308352628e-06,
3005
+ "loss": 0.7841,
3006
+ "step": 411
3007
+ },
3008
+ {
3009
+ "epoch": 3.67,
3010
+ "grad_norm": 0.3467993408892318,
3011
+ "learning_rate": 3.330323746510955e-06,
3012
+ "loss": 0.7605,
3013
+ "step": 412
3014
+ },
3015
+ {
3016
+ "epoch": 3.68,
3017
+ "grad_norm": 0.37371307324588393,
3018
+ "learning_rate": 3.148839217287758e-06,
3019
+ "loss": 0.7229,
3020
+ "step": 413
3021
+ },
3022
+ {
3023
+ "epoch": 3.69,
3024
+ "grad_norm": 0.32271590708905057,
3025
+ "learning_rate": 2.9723601000734016e-06,
3026
+ "loss": 0.7227,
3027
+ "step": 414
3028
+ },
3029
+ {
3030
+ "epoch": 3.69,
3031
+ "grad_norm": 0.3080800887837192,
3032
+ "learning_rate": 2.800895515571078e-06,
3033
+ "loss": 0.7322,
3034
+ "step": 415
3035
+ },
3036
+ {
3037
+ "epoch": 3.7,
3038
+ "grad_norm": 0.3563938469507623,
3039
+ "learning_rate": 2.634454325325497e-06,
3040
+ "loss": 0.7951,
3041
+ "step": 416
3042
+ },
3043
+ {
3044
+ "epoch": 3.71,
3045
+ "grad_norm": 0.3544288347449977,
3046
+ "learning_rate": 2.473045131264862e-06,
3047
+ "loss": 0.7204,
3048
+ "step": 417
3049
+ },
3050
+ {
3051
+ "epoch": 3.72,
3052
+ "grad_norm": 0.37683581963069984,
3053
+ "learning_rate": 2.3166762752563463e-06,
3054
+ "loss": 0.7817,
3055
+ "step": 418
3056
+ },
3057
+ {
3058
+ "epoch": 3.73,
3059
+ "grad_norm": 0.33996733249074595,
3060
+ "learning_rate": 2.1653558386749427e-06,
3061
+ "loss": 0.68,
3062
+ "step": 419
3063
+ },
3064
+ {
3065
+ "epoch": 3.74,
3066
+ "grad_norm": 0.3069725548353936,
3067
+ "learning_rate": 2.0190916419858484e-06,
3068
+ "loss": 0.798,
3069
+ "step": 420
3070
+ },
3071
+ {
3072
+ "epoch": 3.74,
3073
+ "eval_loss": 1.280185580253601,
3074
+ "eval_runtime": 13.1908,
3075
+ "eval_samples_per_second": 22.743,
3076
+ "eval_steps_per_second": 2.881,
3077
+ "step": 420
3078
+ },
3079
+ {
3080
+ "epoch": 3.75,
3081
+ "grad_norm": 0.3417039799474373,
3082
+ "learning_rate": 1.8778912443402242e-06,
3083
+ "loss": 0.7972,
3084
+ "step": 421
3085
+ },
3086
+ {
3087
+ "epoch": 3.76,
3088
+ "grad_norm": 0.36875255309045446,
3089
+ "learning_rate": 1.7417619431845944e-06,
3090
+ "loss": 0.6653,
3091
+ "step": 422
3092
+ },
3093
+ {
3094
+ "epoch": 3.77,
3095
+ "grad_norm": 0.37727682021595976,
3096
+ "learning_rate": 1.6107107738836835e-06,
3097
+ "loss": 0.7994,
3098
+ "step": 423
3099
+ },
3100
+ {
3101
+ "epoch": 3.77,
3102
+ "grad_norm": 0.3680295622641893,
3103
+ "learning_rate": 1.4847445093567836e-06,
3104
+ "loss": 0.7551,
3105
+ "step": 424
3106
+ },
3107
+ {
3108
+ "epoch": 3.78,
3109
+ "grad_norm": 0.34533281482301054,
3110
+ "learning_rate": 1.3638696597277679e-06,
3111
+ "loss": 0.7416,
3112
+ "step": 425
3113
+ },
3114
+ {
3115
+ "epoch": 3.79,
3116
+ "grad_norm": 0.3908807108284709,
3117
+ "learning_rate": 1.2480924719885934e-06,
3118
+ "loss": 0.7188,
3119
+ "step": 426
3120
+ },
3121
+ {
3122
+ "epoch": 3.8,
3123
+ "grad_norm": 0.31916637760320243,
3124
+ "learning_rate": 1.1374189296765037e-06,
3125
+ "loss": 0.7594,
3126
+ "step": 427
3127
+ },
3128
+ {
3129
+ "epoch": 3.81,
3130
+ "grad_norm": 0.33316597860051206,
3131
+ "learning_rate": 1.0318547525647315e-06,
3132
+ "loss": 0.7249,
3133
+ "step": 428
3134
+ },
3135
+ {
3136
+ "epoch": 3.82,
3137
+ "grad_norm": 0.3416859037907314,
3138
+ "learning_rate": 9.314053963669245e-07,
3139
+ "loss": 0.8137,
3140
+ "step": 429
3141
+ },
3142
+ {
3143
+ "epoch": 3.83,
3144
+ "grad_norm": 0.3166447199987983,
3145
+ "learning_rate": 8.360760524551814e-07,
3146
+ "loss": 0.7548,
3147
+ "step": 430
3148
+ },
3149
+ {
3150
+ "epoch": 3.84,
3151
+ "grad_norm": 0.3678155762471668,
3152
+ "learning_rate": 7.458716475917559e-07,
3153
+ "loss": 0.6848,
3154
+ "step": 431
3155
+ },
3156
+ {
3157
+ "epoch": 3.85,
3158
+ "grad_norm": 0.3564576656343474,
3159
+ "learning_rate": 6.607968436744272e-07,
3160
+ "loss": 0.7188,
3161
+ "step": 432
3162
+ },
3163
+ {
3164
+ "epoch": 3.85,
3165
+ "grad_norm": 0.31739334088982646,
3166
+ "learning_rate": 5.808560374955585e-07,
3167
+ "loss": 0.6899,
3168
+ "step": 433
3169
+ },
3170
+ {
3171
+ "epoch": 3.86,
3172
+ "grad_norm": 0.3517404847481434,
3173
+ "learning_rate": 5.06053360514902e-07,
3174
+ "loss": 0.7085,
3175
+ "step": 434
3176
+ },
3177
+ {
3178
+ "epoch": 3.87,
3179
+ "grad_norm": 0.32714795923909773,
3180
+ "learning_rate": 4.363926786460359e-07,
3181
+ "loss": 0.8216,
3182
+ "step": 435
3183
+ },
3184
+ {
3185
+ "epoch": 3.88,
3186
+ "grad_norm": 0.3635146713982181,
3187
+ "learning_rate": 3.718775920565687e-07,
3188
+ "loss": 0.7684,
3189
+ "step": 436
3190
+ },
3191
+ {
3192
+ "epoch": 3.89,
3193
+ "grad_norm": 0.3419976870684463,
3194
+ "learning_rate": 3.125114349821212e-07,
3195
+ "loss": 0.7825,
3196
+ "step": 437
3197
+ },
3198
+ {
3199
+ "epoch": 3.9,
3200
+ "grad_norm": 0.3872335456149991,
3201
+ "learning_rate": 2.5829727555397584e-07,
3202
+ "loss": 0.8252,
3203
+ "step": 438
3204
+ },
3205
+ {
3206
+ "epoch": 3.91,
3207
+ "grad_norm": 0.3918700023496713,
3208
+ "learning_rate": 2.0923791564050333e-07,
3209
+ "loss": 0.6846,
3210
+ "step": 439
3211
+ },
3212
+ {
3213
+ "epoch": 3.92,
3214
+ "grad_norm": 0.3039893808886515,
3215
+ "learning_rate": 1.6533589070237832e-07,
3216
+ "loss": 0.6893,
3217
+ "step": 440
3218
+ },
3219
+ {
3220
+ "epoch": 3.93,
3221
+ "grad_norm": 0.2983095993470017,
3222
+ "learning_rate": 1.2659346966152895e-07,
3223
+ "loss": 0.7482,
3224
+ "step": 441
3225
+ },
3226
+ {
3227
+ "epoch": 3.93,
3228
+ "grad_norm": 0.29173707821708994,
3229
+ "learning_rate": 9.30126547838861e-08,
3230
+ "loss": 0.8286,
3231
+ "step": 442
3232
+ },
3233
+ {
3234
+ "epoch": 3.94,
3235
+ "grad_norm": 0.3410941283765189,
3236
+ "learning_rate": 6.459518157591048e-08,
3237
+ "loss": 0.7608,
3238
+ "step": 443
3239
+ },
3240
+ {
3241
+ "epoch": 3.95,
3242
+ "grad_norm": 0.3551291216161622,
3243
+ "learning_rate": 4.1342518694853506e-08,
3244
+ "loss": 0.8346,
3245
+ "step": 444
3246
+ },
3247
+ {
3248
+ "epoch": 3.96,
3249
+ "grad_norm": 0.340830105966026,
3250
+ "learning_rate": 2.3255867872928882e-08,
3251
+ "loss": 0.7388,
3252
+ "step": 445
3253
+ },
3254
+ {
3255
+ "epoch": 3.97,
3256
+ "grad_norm": 0.3072115448848053,
3257
+ "learning_rate": 1.0336163855129144e-08,
3258
+ "loss": 0.842,
3259
+ "step": 446
3260
+ },
3261
+ {
3262
+ "epoch": 3.98,
3263
+ "grad_norm": 0.3339675653700237,
3264
+ "learning_rate": 2.5840743509863983e-09,
3265
+ "loss": 0.7289,
3266
+ "step": 447
3267
+ },
3268
+ {
3269
+ "epoch": 3.99,
3270
+ "grad_norm": 0.29581508154823644,
3271
+ "learning_rate": 0.0,
3272
+ "loss": 0.7461,
3273
+ "step": 448
3274
+ },
3275
+ {
3276
+ "epoch": 3.99,
3277
+ "eval_loss": 1.2807621955871582,
3278
+ "eval_runtime": 13.2308,
3279
+ "eval_samples_per_second": 22.674,
3280
+ "eval_steps_per_second": 2.872,
3281
+ "step": 448
3282
+ }
3283
+ ],
3284
+ "logging_steps": 1,
3285
+ "max_steps": 448,
3286
+ "num_input_tokens_seen": 0,
3287
+ "num_train_epochs": 4,
3288
+ "save_steps": 112,
3289
+ "total_flos": 5.340598301349642e+17,
3290
+ "train_batch_size": 2,
3291
+ "trial_name": null,
3292
+ "trial_params": null
3293
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d400c16f982c36b10268ff7e69e878c44d11f5fb692a61770a8e1efb50d4491c
3
+ size 6776
zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)