dukenmarga's picture
End of training
abad43f verified
|
raw
history blame
3.32 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6125

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1555
  • Accuracy: 0.6125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7108 1.0 10 1.8424 0.4188
1.6278 2.0 20 1.7495 0.45
1.465 3.0 30 1.6153 0.5062
1.2862 4.0 40 1.5099 0.55
1.1151 5.0 50 1.4399 0.5312
0.9631 6.0 60 1.3803 0.5375
0.8242 7.0 70 1.3213 0.5875
0.6939 8.0 80 1.2673 0.575
0.576 9.0 90 1.2463 0.5938
0.4801 10.0 100 1.2108 0.6
0.4008 11.0 110 1.2093 0.575
0.3426 12.0 120 1.1744 0.5687
0.2976 13.0 130 1.1710 0.5938
0.2667 14.0 140 1.1545 0.5875
0.2434 15.0 150 1.1622 0.6
0.2261 16.0 160 1.1522 0.5875
0.2119 17.0 170 1.1486 0.6062
0.2016 18.0 180 1.1555 0.6125
0.1932 19.0 190 1.1487 0.6062
0.1857 20.0 200 1.1422 0.5938
0.1812 21.0 210 1.1438 0.6
0.1772 22.0 220 1.1521 0.5687
0.1735 23.0 230 1.1428 0.5938
0.1714 24.0 240 1.1487 0.6
0.1703 25.0 250 1.1462 0.6

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1