|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-large-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: image_classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.51875 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# image_classification |
|
|
|
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5386 |
|
- Accuracy: 0.5188 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.0473 | 1.0 | 20 | 2.0179 | 0.175 | |
|
| 1.6184 | 2.0 | 40 | 1.7787 | 0.2437 | |
|
| 1.2134 | 3.0 | 60 | 1.5985 | 0.3625 | |
|
| 1.0157 | 4.0 | 80 | 1.3311 | 0.4813 | |
|
| 0.8578 | 5.0 | 100 | 1.3041 | 0.4875 | |
|
| 0.6496 | 6.0 | 120 | 1.3222 | 0.5062 | |
|
| 0.5972 | 7.0 | 140 | 1.5594 | 0.4562 | |
|
| 0.5073 | 8.0 | 160 | 1.4126 | 0.4813 | |
|
| 0.3964 | 9.0 | 180 | 1.3702 | 0.525 | |
|
| 0.4054 | 10.0 | 200 | 1.3894 | 0.5188 | |
|
| 0.2845 | 11.0 | 220 | 1.4471 | 0.5188 | |
|
| 0.2262 | 12.0 | 240 | 1.5165 | 0.525 | |
|
| 0.2412 | 13.0 | 260 | 1.4684 | 0.5125 | |
|
| 0.2229 | 14.0 | 280 | 1.4005 | 0.525 | |
|
| 0.2078 | 15.0 | 300 | 1.5629 | 0.5062 | |
|
| 0.1619 | 16.0 | 320 | 1.6014 | 0.525 | |
|
| 0.1834 | 17.0 | 340 | 1.4821 | 0.5125 | |
|
| 0.1594 | 18.0 | 360 | 1.5195 | 0.5375 | |
|
| 0.1249 | 19.0 | 380 | 1.5585 | 0.5188 | |
|
| 0.1117 | 20.0 | 400 | 1.4735 | 0.5687 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|