dukenmarga's picture
End of training
051105f verified
|
raw
history blame
3.61 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5375

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2847
  • Accuracy: 0.5375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.856 1.0 10 1.9048 0.3063
1.81 2.0 20 1.8399 0.3063
1.7131 3.0 30 1.7206 0.3375
1.5894 4.0 40 1.6192 0.375
1.4919 5.0 50 1.5405 0.4688
1.4037 6.0 60 1.4735 0.4625
1.2923 7.0 70 1.4350 0.4688
1.2228 8.0 80 1.4562 0.4188
1.1275 9.0 90 1.3757 0.4875
1.0461 10.0 100 1.3880 0.45
0.9891 11.0 110 1.3440 0.5
0.9058 12.0 120 1.3576 0.4813
0.8835 13.0 130 1.3420 0.5188
0.8274 14.0 140 1.3294 0.4938
0.7686 15.0 150 1.2996 0.525
0.7181 16.0 160 1.2817 0.5437
0.6822 17.0 170 1.2726 0.5312
0.6398 18.0 180 1.3250 0.5062
0.6009 19.0 190 1.3224 0.5312
0.5892 20.0 200 1.3125 0.4875
0.5528 21.0 210 1.3334 0.4938
0.5699 22.0 220 1.2408 0.5563
0.5209 23.0 230 1.3150 0.525
0.5011 24.0 240 1.3601 0.4938
0.5123 25.0 250 1.2566 0.5563
0.4768 26.0 260 1.2542 0.5188
0.4812 27.0 270 1.2753 0.525
0.474 28.0 280 1.2961 0.5125
0.5015 29.0 290 1.2658 0.5437
0.4685 30.0 300 1.2562 0.55

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1