bertweet-base

This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6796
  • F1 Macro: 0.8476
  • F1: 0.8811
  • F1 Neg: 0.8141
  • Acc: 0.855
  • Prec: 0.9267
  • Recall: 0.8398
  • Mcc: 0.7020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 F1 Neg Acc Prec Recall Mcc
0.6221 1.0 1161 0.5233 0.7216 0.8315 0.6116 0.765 0.7682 0.9062 0.4689
0.4332 2.0 2322 0.4843 0.7862 0.8680 0.7045 0.8175 0.8081 0.9375 0.5946
0.3714 3.0 3483 0.5872 0.8405 0.8963 0.7846 0.86 0.8521 0.9453 0.6914
0.2856 4.0 4644 0.5511 0.8589 0.8984 0.8194 0.87 0.8984 0.8984 0.7179
0.2199 5.0 5805 0.6796 0.8476 0.8811 0.8141 0.855 0.9267 0.8398 0.7020

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dtorber/bertweet-base

Finetuned
(240)
this model