File size: 3,787 Bytes
bb28cd1 fe33920 01296cd fe33920 01296cd 60390b1 1a79ebf 01296cd e5f4de8 1a79ebf 01296cd e5f4de8 1a79ebf 01296cd b6c0f8f 1a79ebf fe33920 01296cd bb28cd1 fe33920 01296cd fe33920 1cda6e9 fe33920 01296cd fe33920 01296cd fe33920 01296cd fe33920 1cda6e9 fe33920 01296cd fe33920 1cda6e9 fe33920 1cda6e9 1a79ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: mit
base_model: roberta-base
tags:
- stress
- classification
- glassdoor
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
They also caused so much stress because some leaders valued optics over output.
example_title: Stressed 1 Example
- text: >-
Way too much work pressure.
example_title: Stressed 2 Example
- text: >-
Understaffed, lots of deck revisions, unpredictable, terrible technology.
example_title: Stressed 3 Example
- text: >-
Nice environment good work life balance.
example_title: Not Stressed 1 Example
model-index:
- name: roberta-base_topic_classification_nyt_news
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: New_York_Times_Topics
type: News
metrics:
- type: F1
name: F1
value: 0.97
- type: accuracy
name: accuracy
value: 0.97
- type: precision
name: precision
value: 0.97
- type: recall
name: recall
value: 0.97
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base_stress_classification
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glassdoor dataset based on 100000 employees' reviews.
It achieves the following results on the evaluation set:
- Loss: 0.1800
- Accuracy: 0.9647
- F1: 0.9647
- Precision: 0.9647
- Recall: 0.9647
## Training data
Training data was classified as follow:
class |Description
-|-
0 |Not Stressed
1 |Stressed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.704 | 1.0 | 8000 | 0.6933 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.6926 | 2.0 | 16000 | 0.6980 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.0099 | 3.0 | 24000 | 0.1800 | 0.9647 | 0.9647 | 0.9647 | 0.9647 |
| 0.2727 | 4.0 | 32000 | 0.2243 | 0.9526 | 0.9526 | 0.9527 | 0.9526 |
| 0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 |
### Model performance
-|precision|recall|f1|support
-|-|-|-|-
Not Stressed|0.96|0.97|0.97|10000
Stressed|0.97|0.96|0.97|10000
| | | |
accuracy|||0.97|20000
macro avg|0.97|0.97|0.97|20000
weighted avg|0.97|0.97|0.97|20000
### How to use roberta-base_topic_classification_nyt_news with HuggingFace
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
text = "They also caused so much stress because some leaders valued optics over output."
pipe(text)
[{'label': 'Stressed', 'score': 0.9959163069725037}]
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2 |