Update README.md
Browse files
README.md
CHANGED
@@ -2,15 +2,46 @@
|
|
2 |
license: mit
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
-
-
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
- f1
|
9 |
- precision
|
10 |
- recall
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model-index:
|
12 |
-
- name: roberta-
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,7 +49,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# roberta-base_stress_classification
|
20 |
|
21 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.1800
|
24 |
- Accuracy: 0.9647
|
@@ -26,17 +57,14 @@ It achieves the following results on the evaluation set:
|
|
26 |
- Precision: 0.9647
|
27 |
- Recall: 0.9647
|
28 |
|
29 |
-
##
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Training and evaluation data
|
38 |
-
|
39 |
-
More information needed
|
40 |
|
41 |
## Training procedure
|
42 |
|
@@ -63,9 +91,36 @@ The following hyperparameters were used during training:
|
|
63 |
| 0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 |
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
### Framework versions
|
67 |
|
68 |
- Transformers 4.32.1
|
69 |
- Pytorch 2.1.0+cu121
|
70 |
- Datasets 2.12.0
|
71 |
-
- Tokenizers 0.13.2
|
|
|
2 |
license: mit
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
+
- stress
|
6 |
+
- classification
|
7 |
+
- glassdoor
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
- f1
|
11 |
- precision
|
12 |
- recall
|
13 |
+
widget:
|
14 |
+
- text: >-
|
15 |
+
They also caused so much stress because some leaders valued optics over output.: Stressed
|
16 |
+
- text: >-
|
17 |
+
Way too much work pressure.: Stressed
|
18 |
+
- text: >-
|
19 |
+
Understaffed, lots of deck revisions, unpredictable, terrible technology.: Stressed
|
20 |
+
- text: >-
|
21 |
+
Nice environment, good work life balance.: Not Stressed
|
22 |
model-index:
|
23 |
+
- name: roberta-base_topic_classification_nyt_news
|
24 |
+
results:
|
25 |
+
- task:
|
26 |
+
name: Text Classification
|
27 |
+
type: text-classification
|
28 |
+
dataset:
|
29 |
+
name: New_York_Times_Topics
|
30 |
+
type: News
|
31 |
+
metrics:
|
32 |
+
- type: F1
|
33 |
+
name: F1
|
34 |
+
value: 0.97
|
35 |
+
- type: accuracy
|
36 |
+
name: accuracy
|
37 |
+
value: 0.97
|
38 |
+
- type: precision
|
39 |
+
name: precision
|
40 |
+
value: 0.97
|
41 |
+
- type: recall
|
42 |
+
name: recall
|
43 |
+
value: 0.97
|
44 |
+
pipeline_tag: text-classification
|
45 |
---
|
46 |
|
47 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
49 |
|
50 |
# roberta-base_stress_classification
|
51 |
|
52 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glassdoor dataset based on 100000 employees' reviews.
|
53 |
It achieves the following results on the evaluation set:
|
54 |
- Loss: 0.1800
|
55 |
- Accuracy: 0.9647
|
|
|
57 |
- Precision: 0.9647
|
58 |
- Recall: 0.9647
|
59 |
|
60 |
+
## Training data
|
61 |
|
62 |
+
Training data was classified as follow:
|
63 |
|
64 |
+
class |Description
|
65 |
+
-|-
|
66 |
+
0 |Not Stressed
|
67 |
+
1 |Stressed
|
|
|
|
|
|
|
68 |
|
69 |
## Training procedure
|
70 |
|
|
|
91 |
| 0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 |
|
92 |
|
93 |
|
94 |
+
### Model performance
|
95 |
+
|
96 |
+
-|precision|recall|f1|support
|
97 |
+
-|-|-|-|-
|
98 |
+
Not Stressed|0.96|0.97|0.97|10000
|
99 |
+
Stressed|0.97|0.96|0.97|10000
|
100 |
+
| | | |
|
101 |
+
accuracy|||0.97|20000
|
102 |
+
macro avg|0.97|0.97|0.97|20000
|
103 |
+
weighted avg|0.97|0.97|0.97|20000
|
104 |
+
|
105 |
+
|
106 |
+
### How to use roberta-base_topic_classification_nyt_news with HuggingFace
|
107 |
+
|
108 |
+
```python
|
109 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
110 |
+
from transformers import pipeline
|
111 |
+
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
|
113 |
+
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
|
114 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
|
115 |
+
|
116 |
+
text = "They also caused so much stress because some leaders valued optics over output."
|
117 |
+
pipe(text)
|
118 |
+
|
119 |
+
[{'label': 'Stressed', 'score': 0.9959163069725037}]
|
120 |
+
|
121 |
### Framework versions
|
122 |
|
123 |
- Transformers 4.32.1
|
124 |
- Pytorch 2.1.0+cu121
|
125 |
- Datasets 2.12.0
|
126 |
+
- Tokenizers 0.13.2
|