category-classifier
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7933
- F1: 0.7172
- Accuracy: 0.7212
- F1 Ai: 0.6154
- F1 Programming: 0.6715
- F1 Science & engineering: 0.6393
- F1 Tech: 0.4259
- F1 Rejected: 0.8158
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | F1 Ai | F1 Programming | F1 Science & engineering | F1 Tech | F1 Rejected |
---|---|---|---|---|---|---|---|---|---|---|
0.587 | 1.0 | 1881 | 0.6882 | 0.7150 | 0.7167 | 0.6565 | 0.6787 | 0.6900 | 0.4046 | 0.7984 |
0.3324 | 2.0 | 3762 | 0.7463 | 0.7237 | 0.7293 | 0.6492 | 0.6987 | 0.6517 | 0.4044 | 0.8179 |
0.1291 | 3.0 | 5643 | 1.7933 | 0.7172 | 0.7212 | 0.6154 | 0.6715 | 0.6393 | 0.4259 | 0.8158 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.2.2
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for drcoool/category-classifier
Base model
answerdotai/ModernBERT-base