soda-clip
This model was trained from scratch on the soda-panelized-clip-loader dataset. It achieves the following results on the evaluation set:
- Loss: 1.9732
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.0258 | 0.13 | 100 | 3.7622 |
3.556 | 0.26 | 200 | 3.4317 |
3.3307 | 0.39 | 300 | 3.2219 |
3.2305 | 0.51 | 400 | 3.1044 |
3.1104 | 0.64 | 500 | 2.9733 |
2.9966 | 0.77 | 600 | 2.8562 |
2.8576 | 0.9 | 700 | 2.8080 |
2.7558 | 1.03 | 800 | 2.6612 |
2.5565 | 1.16 | 900 | 2.6441 |
2.4791 | 1.28 | 1000 | 2.5369 |
2.4483 | 1.41 | 1100 | 2.4951 |
2.3751 | 1.54 | 1200 | 2.3893 |
2.3408 | 1.67 | 1300 | 2.3960 |
2.2761 | 1.8 | 1400 | 2.2943 |
2.2426 | 1.93 | 1500 | 2.2422 |
2.0389 | 2.05 | 1600 | 2.2475 |
1.8415 | 2.18 | 1700 | 2.1555 |
1.8286 | 2.31 | 1800 | 2.1755 |
1.7927 | 2.44 | 1900 | 2.1267 |
1.7693 | 2.57 | 2000 | 2.0621 |
1.7448 | 2.7 | 2100 | 2.0653 |
1.7027 | 2.82 | 2200 | 2.0110 |
1.7184 | 2.95 | 2300 | 1.9699 |
1.4059 | 3.08 | 2400 | 1.9781 |
1.2499 | 3.21 | 2500 | 1.9837 |
1.2478 | 3.34 | 2600 | 1.9859 |
1.1903 | 3.47 | 2700 | 1.9470 |
1.1989 | 3.59 | 2800 | 1.9819 |
1.169 | 3.72 | 2900 | 1.9825 |
1.1538 | 3.85 | 3000 | 1.9429 |
1.1178 | 3.98 | 3100 | 1.9387 |
0.8271 | 4.11 | 3200 | 1.9931 |
0.748 | 4.24 | 3300 | 1.9974 |
0.7123 | 4.36 | 3400 | 1.9994 |
0.7012 | 4.49 | 3500 | 1.9967 |
0.7163 | 4.62 | 3600 | 1.9914 |
0.6899 | 4.75 | 3700 | 1.9836 |
0.6608 | 4.88 | 3800 | 1.9732 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.