CLIP
Overview
The CLIP model was proposed in Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3.
The abstract from the paper is the following:
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.
This model was contributed by valhalla. The original code can be found here.
Usage tips and example
CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. The CLIPImageProcessor can be used to resize (or rescale) and normalize images for the model.
The CLIPTokenizer is used to encode the text. The CLIPProcessor wraps CLIPImageProcessor and CLIPTokenizer into a single instance to both encode the text and prepare the images. The following example shows how to get the image-text similarity scores using CLIPProcessor and CLIPModel.
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
Combining CLIP and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2.
pip install -U flash-attn --no-build-isolation
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. torch.float16
)
For small batch sizes, you might notice a slowdown in your model when using flash attention. Refer to the section Expected speedups with Flash Attention and SDPA below and select an appropriate attention implementation.
To load and run a model using Flash Attention 2, refer to the snippet below:
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import CLIPProcessor, CLIPModel
>>> device = "cuda"
>>> torch_dtype = torch.float16
>>> model = CLIPModel.from_pretrained(
... "openai/clip-vit-base-patch32",
... attn_implementation="flash_attention_2",
... device_map=device,
... torch_dtype=torch_dtype,
... )
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs.to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[0.9946, 0.0052]], device='cuda:0', dtype=torch.float16)
Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of torch.nn.functional
. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
official documentation
or the GPU Inference
page for more information.
SDPA is used by default for torch>=2.1.1
when an implementation is available, but you may also set
attn_implementation="sdpa"
in from_pretrained()
to explicitly request SDPA to be used.
from transformers import CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16, attn_implementation="sdpa")
For the best speedups, we recommend loading the model in half-precision (e.g. torch.float16
or torch.bfloat16
).
Expected speedups with Flash Attention and SDPA
On a local benchmark (NVIDIA A10G, PyTorch 2.3.1+cu121) with float16
, we saw the following speedups during inference for "openai/clip-vit-large-patch14"
checkpoint (code):
CLIPTextModel
Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
---|---|---|---|---|---|
4 | 0.009 | 0.012 | 0.737 | 0.007 | 1.269 |
16 | 0.009 | 0.014 | 0.659 | 0.008 | 1.187 |
32 | 0.018 | 0.021 | 0.862 | 0.016 | 1.142 |
64 | 0.034 | 0.034 | 1.001 | 0.03 | 1.163 |
128 | 0.063 | 0.058 | 1.09 | 0.054 | 1.174 |
CLIPVisionModel
Image batch size | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
---|---|---|---|---|---|
1 | 0.016 | 0.013 | 1.247 | 0.012 | 1.318 |
4 | 0.025 | 0.021 | 1.198 | 0.021 | 1.202 |
16 | 0.093 | 0.075 | 1.234 | 0.075 | 1.24 |
32 | 0.181 | 0.147 | 1.237 | 0.146 | 1.241 |
CLIPModel
Image batch size | Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
---|---|---|---|---|---|---|
1 | 4 | 0.025 | 0.026 | 0.954 | 0.02 | 1.217 |
1 | 16 | 0.026 | 0.028 | 0.918 | 0.02 | 1.287 |
1 | 64 | 0.042 | 0.046 | 0.906 | 0.036 | 1.167 |
4 | 4 | 0.028 | 0.033 | 0.849 | 0.024 | 1.189 |
4 | 16 | 0.034 | 0.035 | 0.955 | 0.029 | 1.169 |
4 | 64 | 0.059 | 0.055 | 1.072 | 0.05 | 1.179 |
16 | 4 | 0.096 | 0.088 | 1.091 | 0.078 | 1.234 |
16 | 16 | 0.102 | 0.09 | 1.129 | 0.083 | 1.224 |
16 | 64 | 0.127 | 0.11 | 1.157 | 0.105 | 1.218 |
32 | 4 | 0.185 | 0.159 | 1.157 | 0.149 | 1.238 |
32 | 16 | 0.19 | 0.162 | 1.177 | 0.154 | 1.233 |
32 | 64 | 0.216 | 0.181 | 1.19 | 0.176 | 1.228 |
Resources
A list of official Hugging Face and community (indicated by π) resources to help you get started with CLIP.
- Fine tuning CLIP with Remote Sensing (Satellite) images and captions, a blog post about how to fine-tune CLIP with RSICD dataset and comparison of performance changes due to data augmentation.
- This example script shows how to train a CLIP-like vision-text dual encoder model using a pre-trained vision and text encoder using COCO dataset.
- A notebook on how to use a pretrained CLIP for inference with beam search for image captioning. π
Image retrieval
- A notebook on image retrieval using pretrained CLIP and computing MRR(Mean Reciprocal Rank) score. π
- A notebook on image retrieval and showing the similarity score. π
- A notebook on how to map images and texts to the same vector space using Multilingual CLIP. π
- A notebook on how to run CLIP on semantic image search using Unsplash and TMDB datasets. π
Explainability
- A notebook on how to visualize similarity between input token and image segment. π
If youβre interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it. The resource should ideally demonstrate something new instead of duplicating an existing resource.
CLIPConfig
class transformers.CLIPConfig
< source >( text_config = None vision_config = None projection_dim = 512 logit_scale_init_value = 2.6592 **kwargs )
Parameters
- text_config (
dict
, optional) — Dictionary of configuration options used to initialize CLIPTextConfig. - vision_config (
dict
, optional) — Dictionary of configuration options used to initialize CLIPVisionConfig. - projection_dim (
int
, optional, defaults to 512) — Dimensionality of text and vision projection layers. - logit_scale_init_value (
float
, optional, defaults to 2.6592) — The initial value of the logit_scale parameter. Default is used as per the original CLIP implementation. - kwargs (optional) — Dictionary of keyword arguments.
CLIPConfig is the configuration class to store the configuration of a CLIPModel. It is used to instantiate a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPConfig, CLIPModel
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPConfig()
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
>>> from transformers import CLIPTextConfig, CLIPVisionConfig
>>> # Initializing a CLIPText and CLIPVision configuration
>>> config_text = CLIPTextConfig()
>>> config_vision = CLIPVisionConfig()
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
from_text_vision_configs
< source >( text_config: CLIPTextConfig vision_config: CLIPVisionConfig **kwargs ) β CLIPConfig
Instantiate a CLIPConfig (or a derived class) from clip text model configuration and clip vision model configuration.
CLIPTextConfig
class transformers.CLIPTextConfig
< source >( vocab_size = 49408 hidden_size = 512 intermediate_size = 2048 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 8 max_position_embeddings = 77 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 pad_token_id = 1 bos_token_id = 49406 eos_token_id = 49407 **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 49408) — Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling CLIPModel. - hidden_size (
int
, optional, defaults to 512) — Dimensionality of the encoder layers and the pooler layer. - intermediate_size (
int
, optional, defaults to 2048) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - projection_dim (
int
, optional, defaults to 512) — Dimensionality of text and vision projection layers. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder. - max_position_embeddings (
int
, optional, defaults to 77) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - hidden_act (
str
orfunction
, optional, defaults to"quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
"quick_gelu"
are supported. - layer_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the layer normalization layers. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (
float
, optional, defaults to 1.0) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). - pad_token_id (
int
, optional, defaults to 1) — Padding token id. - bos_token_id (
int
, optional, defaults to 49406) — Beginning of stream token id. - eos_token_id (
int
, optional, defaults to 49407) — End of stream token id.
This is the configuration class to store the configuration of a CLIPTextModel. It is used to instantiate a CLIP text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPTextConfig, CLIPTextModel
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
CLIPVisionConfig
class transformers.CLIPVisionConfig
< source >( hidden_size = 768 intermediate_size = 3072 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 32 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 **kwargs )
Parameters
- hidden_size (
int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - intermediate_size (
int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - projection_dim (
int
, optional, defaults to 512) — Dimensionality of text and vision projection layers. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. - num_channels (
int
, optional, defaults to 3) — The number of input channels. - image_size (
int
, optional, defaults to 224) — The size (resolution) of each image. - patch_size (
int
, optional, defaults to 32) — The size (resolution) of each patch. - hidden_act (
str
orfunction
, optional, defaults to"quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
"quick_gelu"
are supported. - layer_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the layer normalization layers. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (
float
, optional, defaults to 1.0) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
This is the configuration class to store the configuration of a CLIPVisionModel. It is used to instantiate a CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
CLIPTokenizer
class transformers.CLIPTokenizer
< source >( vocab_file merges_file errors = 'replace' unk_token = '<|endoftext|>' bos_token = '<|startoftext|>' eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. - merges_file (
str
) — Path to the merges file. - errors (
str
, optional, defaults to"replace"
) — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information. - unk_token (
str
, optional, defaults to"<|endoftext|>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - bos_token (
str
, optional, defaults to"<|startoftext|>"
) — The beginning of sequence token. - eos_token (
str
, optional, defaults to"<|endoftext|>"
) — The end of sequence token. - pad_token (
str
, optional, defaults to"<|endoftext|>"
) — The token used for padding, for example when batching sequences of different lengths.
Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
- single sequence:
<|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) β List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
CLIPTokenizerFast
class transformers.CLIPTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|startoftext|>' eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' **kwargs )
Parameters
- vocab_file (
str
, optional) — Path to the vocabulary file. - merges_file (
str
, optional) — Path to the merges file. - tokenizer_file (
str
, optional) — The path to a tokenizer file to use instead of the vocab file. - unk_token (
str
, optional, defaults to"<|endoftext|>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - bos_token (
str
, optional, defaults to"<|startoftext|>"
) — The beginning of sequence token. - eos_token (
str
, optional, defaults to"<|endoftext|>"
) — The end of sequence token. - pad_token (
str
, optional, defaults to"<|endoftext|>"
) — The token used for padding, for example when batching sequences of different lengths.
Construct a βfastβ CLIP tokenizer (backed by HuggingFaceβs tokenizers library). Based on byte-level Byte-Pair-Encoding.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
- single sequence:
<|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
CLIPImageProcessor
class transformers.CLIPImageProcessor
< source >( do_resize: bool = True size: typing.Dict[str, int] = None resample: Resampling = <Resampling.BICUBIC: 3> do_center_crop: bool = True crop_size: typing.Dict[str, int] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: bool = True **kwargs )
Parameters
- do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the image’s (height, width) dimensions to the specifiedsize
. Can be overridden bydo_resize
in thepreprocess
method. - size (
Dict[str, int]
optional, defaults to{"shortest_edge" -- 224}
): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden bysize
in thepreprocess
method. - resample (
PILImageResampling
, optional, defaults toResampling.BICUBIC
) — Resampling filter to use if resizing the image. Can be overridden byresample
in thepreprocess
method. - do_center_crop (
bool
, optional, defaults toTrue
) — Whether to center crop the image to the specifiedcrop_size
. Can be overridden bydo_center_crop
in thepreprocess
method. - crop_size (
Dict[str, int]
optional, defaults to 224) — Size of the output image after applyingcenter_crop
. Can be overridden bycrop_size
in thepreprocess
method. - do_rescale (
bool
, optional, defaults toTrue
) — Whether to rescale the image by the specified scalerescale_factor
. Can be overridden bydo_rescale
in thepreprocess
method. - rescale_factor (
int
orfloat
, optional, defaults to1/255
) — Scale factor to use if rescaling the image. Can be overridden byrescale_factor
in thepreprocess
method. - do_normalize (
bool
, optional, defaults toTrue
) — Whether to normalize the image. Can be overridden bydo_normalize
in thepreprocess
method. - image_mean (
float
orList[float]
, optional, defaults to[0.48145466, 0.4578275, 0.40821073]
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_mean
parameter in thepreprocess
method. - image_std (
float
orList[float]
, optional, defaults to[0.26862954, 0.26130258, 0.27577711]
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_std
parameter in thepreprocess
method. Can be overridden by theimage_std
parameter in thepreprocess
method. - do_convert_rgb (
bool
, optional, defaults toTrue
) — Whether to convert the image to RGB.
Constructs a CLIP image processor.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: bool = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None **kwargs )
Parameters
- images (
ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False
. - do_resize (
bool
, optional, defaults toself.do_resize
) — Whether to resize the image. - size (
Dict[str, int]
, optional, defaults toself.size
) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. - resample (
int
, optional, defaults toself.resample
) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling
. Only has an effect ifdo_resize
is set toTrue
. - do_center_crop (
bool
, optional, defaults toself.do_center_crop
) — Whether to center crop the image. - crop_size (
Dict[str, int]
, optional, defaults toself.crop_size
) — Size of the center crop. Only has an effect ifdo_center_crop
is set toTrue
. - do_rescale (
bool
, optional, defaults toself.do_rescale
) — Whether to rescale the image. - rescale_factor (
float
, optional, defaults toself.rescale_factor
) — Rescale factor to rescale the image by ifdo_rescale
is set toTrue
. - do_normalize (
bool
, optional, defaults toself.do_normalize
) — Whether to normalize the image. - image_mean (
float
orList[float]
, optional, defaults toself.image_mean
) — Image mean to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - image_std (
float
orList[float]
, optional, defaults toself.image_std
) — Image standard deviation to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - do_convert_rgb (
bool
, optional, defaults toself.do_convert_rgb
) — Whether to convert the image to RGB. - return_tensors (
str
orTensorType
, optional) — The type of tensors to return. Can be one of:- Unset: Return a list of
np.ndarray
. TensorType.TENSORFLOW
or'tf'
: Return a batch of typetf.Tensor
.TensorType.PYTORCH
or'pt'
: Return a batch of typetorch.Tensor
.TensorType.NUMPY
or'np'
: Return a batch of typenp.ndarray
.TensorType.JAX
or'jax'
: Return a batch of typejax.numpy.ndarray
.
- Unset: Return a list of
- data_format (
ChannelDimension
orstr
, optional, defaults toChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input image.
- input_data_format (
ChannelDimension
orstr
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format."none"
orChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
CLIPFeatureExtractor
CLIPProcessor
class transformers.CLIPProcessor
< source >( image_processor = None tokenizer = None **kwargs )
Parameters
- image_processor (CLIPImageProcessor, optional) — The image processor is a required input.
- tokenizer (CLIPTokenizerFast, optional) — The tokenizer is a required input.
Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
CLIPProcessor offers all the functionalities of CLIPImageProcessor and CLIPTokenizerFast. See the
__call__()
and decode() for more information.
This method forwards all its arguments to CLIPTokenizerFastβs batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to CLIPTokenizerFastβs decode(). Please refer to the docstring of this method for more information.
CLIPModel
class transformers.CLIPModel
< source >( config: CLIPConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None return_loss: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) β transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - return_loss (
bool
, optional) — Whether or not to return the contrastive loss. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenreturn_loss
isTrue
) β Contrastive loss for image-text similarity. - logits_per_image (
torch.FloatTensor
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text (
torch.FloatTensor
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds (
torch.FloatTensor
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of CLIPTextModel. - image_embeds (
torch.FloatTensor
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of CLIPVisionModel. - text_model_output (
BaseModelOutputWithPooling
) β The output of the CLIPTextModel. - vision_model_output (
BaseModelOutputWithPooling
) β The output of the CLIPVisionModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
get_text_features
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of CLIPTextModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) β image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of CLIPVisionModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
CLIPTextModel
class transformers.CLIPTextModel
< source >( config: CLIPTextConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The text model from CLIP without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, CLIPTextModel
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
CLIPTextModelWithProjection
class transformers.CLIPTextModelWithProjection
< source >( config: CLIPTextConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.models.clip.modeling_clip.CLIPTextModelOutput
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_clip.CLIPTextModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPTextModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
text_embeds (
torch.FloatTensor
of shape(batch_size, output_dim)
optional returned when model is initialized withwith_projection=True
) β The text embeddings obtained by applying the projection layer to the pooler_output. -
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPTextModelWithProjection forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
CLIPVisionModelWithProjection
class transformers.CLIPVisionModelWithProjection
< source >( config: CLIPVisionConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) β transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
image_embeds (
torch.FloatTensor
of shape(batch_size, output_dim)
optional returned when model is initialized withwith_projection=True
) β The image embeddings obtained by applying the projection layer to the pooler_output. -
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPVisionModelWithProjection forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> image_embeds = outputs.image_embeds
CLIPVisionModel
class transformers.CLIPVisionModel
< source >( config: CLIPVisionConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The vision model from CLIP without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPVisionModel
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
CLIPForImageClassification
class transformers.CLIPForImageClassification
< source >( config: CLIPConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of the patch tokens) e.g. for ImageNet.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - return_loss (
bool
, optional) — Whether or not to return the contrastive loss. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaultsFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.ImageClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (CLIPConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage. -
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, patch_size, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoImageProcessor, CLIPForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> model = CLIPForImageClassification.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
LABEL_0
TFCLIPModel
class transformers.TFCLIPModel
< source >( config: CLIPConfig *inputs **kwargs )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None pixel_values: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None return_loss: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
Parameters
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - return_loss (
bool
, optional) — Whether or not to return the contrastive loss. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
A transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- loss (
tf.Tensor
of shape(1,)
, optional, returned whenreturn_loss
isTrue
) β Contrastive loss for image-text similarity. - logits_per_image:(
tf.Tensor
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text:(
tf.Tensor
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds(
tf.Tensor
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of TFCLIPTextModel. - image_embeds(
tf.Tensor
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of TFCLIPVisionModel. - text_model_output(
~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the TFCLIPTextModel. - vision_model_output(
~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the TFCLIPVisionModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
get_text_features
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β text_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
text_features (tf.Tensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of TFCLIPTextModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >( pixel_values: TFModelInputType | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β image_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
- pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
image_features (tf.Tensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of TFCLIPVisionModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> image_features = model.get_image_features(**inputs)
TFCLIPTextModel
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
Parameters
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFCLIPTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, TFCLIPTextModel
>>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
TFCLIPVisionModel
call
< source >( pixel_values: TFModelInputType | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
Parameters
- pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFCLIPVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPVisionModel
>>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
FlaxCLIPModel
class transformers.FlaxCLIPModel
< source >( config: CLIPConfig input_shape: typing.Optional[typing.Tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids pixel_values attention_mask = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- logits_per_image:(
jnp.ndarray
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text:(
jnp.ndarray
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds(
jnp.ndarray
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPTextModel. - image_embeds(
jnp.ndarray
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPVisionModel. - text_model_output(
FlaxBaseModelOutputWithPooling
): The output of the FlaxCLIPTextModel. - vision_model_output(
FlaxBaseModelOutputWithPooling
): The output of the FlaxCLIPVisionModel.
The FlaxCLIPPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> import jax
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
get_text_features
< source >( input_ids attention_mask = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train = False ) β text_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Returns
text_features (jnp.ndarray
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPTextModel.
Examples:
>>> from transformers import AutoTokenizer, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >( pixel_values params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train = False ) β image_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
- pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details.
Returns
image_features (jnp.ndarray
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPVisionModel
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> image_features = model.get_image_features(**inputs)
FlaxCLIPTextModel
class transformers.FlaxCLIPTextModel
< source >( config: CLIPTextConfig input_shape = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPTextPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxCLIPTextModel
>>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled (EOS token) states
FlaxCLIPTextModelWithProjection
class transformers.FlaxCLIPTextModelWithProjection
< source >( config: CLIPTextConfig input_shape = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
text_embeds (
jnp.ndarray
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPTextModel. -
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPTextPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxCLIPTextModelWithProjection
>>> model = FlaxCLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
FlaxCLIPVisionModel
class transformers.FlaxCLIPVisionModel
< source >( config: CLIPVisionConfig input_shape: typing.Optional[typing.Tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >( pixel_values params: dict = None dropout_rng: <function PRNGKey at 0x7f8466573640> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPVisionPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPVisionModel
>>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled CLS states