BEiT
Overview
The BEiT model was proposed in BEiT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong and Furu Wei. Inspired by BERT, BEiT is the first paper that makes self-supervised pre-training of Vision Transformers (ViTs) outperform supervised pre-training. Rather than pre-training the model to predict the class of an image (as done in the original ViT paper), BEiT models are pre-trained to predict visual tokens from the codebook of OpenAI’s DALL-E model given masked patches.
The abstract from the paper is the following:
We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked image modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e, image patches (such as 16x16 pixels), and visual tokens (i.e., discrete tokens). We first “tokenize” the original image into visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-training objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT, we directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder. Experimental results on image classification and semantic segmentation show that our model achieves competitive results with previous pre-training methods. For example, base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-1K, significantly outperforming from-scratch DeiT training (81.8%) with the same setup. Moreover, large-size BEiT obtains 86.3% only using ImageNet-1K, even outperforming ViT-L with supervised pre-training on ImageNet-22K (85.2%).
Tips:
- BEiT models are regular Vision Transformers, but pre-trained in a self-supervised way rather than supervised. They outperform both the original model (ViT) as well as Data-efficient Image Transformers (DeiT) when fine-tuned on ImageNet-1K and CIFAR-100. You can check out demo notebooks regarding inference as well as fine-tuning on custom data here (you can just replace ViTFeatureExtractor by BeitFeatureExtractor and ViTForImageClassification by BeitForImageClassification).
- There’s also a demo notebook available which showcases how to combine DALL-E’s image tokenizer with BEiT for performing masked image modeling. You can find it here.
- As the BEiT models expect each image to be of the same size (resolution), one can use BeitFeatureExtractor to resize (or rescale) and normalize images for the model.
- Both the patch resolution and image resolution used during pre-training or fine-tuning are reflected in the name of
each checkpoint. For example,
microsoft/beit-base-patch16-224
refers to a base-sized architecture with patch resolution of 16x16 and fine-tuning resolution of 224x224. All checkpoints can be found on the hub. - The available checkpoints are either (1) pre-trained on ImageNet-22k (a collection of 14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on ImageNet-1k (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes).
- BEiT uses relative position embeddings, inspired by the T5 model. During pre-training, the authors shared the
relative position bias among the several self-attention layers. During fine-tuning, each layer’s relative position
bias is initialized with the shared relative position bias obtained after pre-training. Note that, if one wants to
pre-train a model from scratch, one needs to either set the
use_relative_position_bias
or theuse_relative_position_bias
attribute of BeitConfig toTrue
in order to add position embeddings.
This model was contributed by nielsr. The JAX/FLAX version of this model was contributed by kamalkraj. The original code can be found here.
BEiT specific outputs
class transformers.models.beit.modeling_beit.BeitModelOutputWithPooling
< source >( last_hidden_state: FloatTensor = None pooler_output: FloatTensor = None hidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = None attentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )
Parameters
- last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) — Average of the last layer hidden states of the patch tokens (excluding the [CLS] token) if config.use_mean_pooling is set to True. If set to False, then the final hidden state of the [CLS] token will be returned. - hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Class for outputs of BeitModel.
class transformers.models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling
< source >( last_hidden_state: ndarray = None pooler_output: ndarray = None hidden_states: typing.Optional[typing.Tuple[jax._src.numpy.ndarray.ndarray]] = None attentions: typing.Optional[typing.Tuple[jax._src.numpy.ndarray.ndarray]] = None )
Parameters
- last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) — Average of the last layer hidden states of the patch tokens (excluding the [CLS] token) if config.use_mean_pooling is set to True. If set to False, then the final hidden state of the [CLS] token will be returned. - hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs. -
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Class for outputs of FlaxBeitModel.
BeitConfig
class transformers.BeitConfig
< source >( vocab_size = 8192 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-12 is_encoder_decoder = False image_size = 224 patch_size = 16 num_channels = 3 use_mask_token = False use_absolute_position_embeddings = False use_relative_position_bias = False use_shared_relative_position_bias = False layer_scale_init_value = 0.1 drop_path_rate = 0.1 use_mean_pooling = True out_indices = [3, 5, 7, 11] pool_scales = [1, 2, 3, 6] use_auxiliary_head = True auxiliary_loss_weight = 0.4 auxiliary_channels = 256 auxiliary_num_convs = 1 auxiliary_concat_input = False semantic_loss_ignore_index = 255 **kwargs )
Parameters
-
vocab_size (
int
, optional, defaults to 8092) — Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during pre-training. - hidden_size (
int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. -
num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. -
intermediate_size (
int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - hidden_act (
str
orfunction
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported. - hidden_dropout_prob (
float
, optional, defaults to 0.0) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. -
attention_probs_dropout_prob (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. -
initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. -
layer_norm_eps (
float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers. -
image_size (
int
, optional, defaults to 224) — The size (resolution) of each image. -
patch_size (
int
, optional, defaults to 16) — The size (resolution) of each patch. -
num_channels (
int
, optional, defaults to 3) — The number of input channels. -
use_mask_token (
bool
, optional, defaults toFalse
) — Whether to use a mask token for masked image modeling. -
use_absolute_position_embeddings (
bool
, optional, defaults toFalse
) — Whether to use BERT-style absolute position embeddings. -
use_relative_position_bias (
bool
, optional, defaults toFalse
) — Whether to use T5-style relative position embeddings in the self-attention layers. -
use_shared_relative_position_bias (
bool
, optional, defaults toFalse
) — Whether to use the same relative position embeddings across all self-attention layers of the Transformer. -
layer_scale_init_value (
float
, optional, defaults to 0.1) — Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. -
drop_path_rate (
float
, optional, defaults to 0.1) — Stochastic depth rate per sample (when applied in the main path of residual layers). -
use_mean_pooling (
bool
, optional, defaults toTrue
) — Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the CLS token, before applying the classification head. -
out_indices (
List[int]
, optional, defaults to[3, 5, 7, 11]
) — Indices of the feature maps to use for semantic segmentation. -
pool_scales (
Tuple[int]
, optional, defaults to[1, 2, 3, 6]
) — Pooling scales used in Pooling Pyramid Module applied on the last feature map. -
use_auxiliary_head (
bool
, optional, defaults toTrue
) — Whether to use an auxiliary head during training. -
auxiliary_loss_weight (
float
, optional, defaults to 0.4) — Weight of the cross-entropy loss of the auxiliary head. -
auxiliary_channels (
int
, optional, defaults to 256) — Number of channels to use in the auxiliary head. -
auxiliary_num_convs (
int
, optional, defaults to 1) — Number of convolutional layers to use in the auxiliary head. -
auxiliary_concat_input (
bool
, optional, defaults toFalse
) — Whether to concatenate the output of the auxiliary head with the input before the classification layer. -
semantic_loss_ignore_index (
int
, optional, defaults to 255) — The index that is ignored by the loss function of the semantic segmentation model.
This is the configuration class to store the configuration of a BeitModel. It is used to instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BEiT microsoft/beit-base-patch16-224-pt22k architecture.
Example:
>>> from transformers import BeitModel, BeitConfig
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model from the beit-base-patch16-224-pt22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BeitFeatureExtractor
class transformers.BeitFeatureExtractor
< source >( do_resize = True size = 256 resample = <Resampling.BICUBIC: 3> do_center_crop = True crop_size = 224 do_normalize = True image_mean = None image_std = None reduce_labels = False **kwargs )
Parameters
-
do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the input to a certainsize
. -
size (
int
orTuple(int)
, optional, defaults to 256) — Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect ifdo_resize
is set toTrue
. -
resample (
int
, optional, defaults toPIL.Image.BICUBIC
) — An optional resampling filter. This can be one ofPIL.Image.NEAREST
,PIL.Image.BOX
,PIL.Image.BILINEAR
,PIL.Image.HAMMING
,PIL.Image.BICUBIC
orPIL.Image.LANCZOS
. Only has an effect ifdo_resize
is set toTrue
. -
do_center_crop (
bool
, optional, defaults toTrue
) — Whether to crop the input at the center. If the input size is smaller thancrop_size
along any edge, the image is padded with 0’s and then center cropped. -
crop_size (
int
, optional, defaults to 224) — Desired output size when applying center-cropping. Only has an effect ifdo_center_crop
is set toTrue
. -
do_normalize (
bool
, optional, defaults toTrue
) — Whether or not to normalize the input withimage_mean
andimage_std
. -
image_mean (
List[int]
, defaults to[0.5, 0.5, 0.5]
) — The sequence of means for each channel, to be used when normalizing images. -
image_std (
List[int]
, defaults to[0.5, 0.5, 0.5]
) — The sequence of standard deviations for each channel, to be used when normalizing images. -
reduce_labels (
bool
, optional, defaults toFalse
) — Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Constructs a BEiT feature extractor.
This feature extractor inherits from FeatureExtractionMixin which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
__call__
< source >( images: typing.Union[PIL.Image.Image, numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] segmentation_maps: typing.Union[PIL.Image.Image, numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None **kwargs ) → BatchFeature
Parameters
-
images (
PIL.Image.Image
,np.ndarray
,torch.Tensor
,List[PIL.Image.Image]
,List[np.ndarray]
,List[torch.Tensor]
) — The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. -
segmentation_maps (
PIL.Image.Image
,np.ndarray
,torch.Tensor
,List[PIL.Image.Image]
,List[np.ndarray]
,List[torch.Tensor]
, optional) — Optionally, the corresponding semantic segmentation maps with the pixel-wise annotations. -
return_tensors (
str
or TensorType, optional, defaults to'np'
) — If set, will return tensors of a particular framework. Acceptable values are:'tf'
: Return TensorFlowtf.constant
objects.'pt'
: Return PyTorchtorch.Tensor
objects.'np'
: Return NumPynp.ndarray
objects.'jax'
: Return JAXjnp.ndarray
objects.
Returns
A BatchFeature with the following fields:
- pixel_values — Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width).
- labels — Optional labels to be fed to a model (when
segmentation_maps
are provided)
Main method to prepare for the model one or several image(s).
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass PIL images.
post_process_semantic_segmentation
< source >( outputs target_sizes: typing.List[typing.Tuple] = None ) → semantic_segmentation
Parameters
- outputs (BeitForSemanticSegmentation) — Raw outputs of the model.
-
target_sizes (
List[Tuple]
of lengthbatch_size
, optional) — List of tuples corresponding to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns
semantic_segmentation
List[torch.Tensor]
of length batch_size
, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if target_sizes
is
specified). Each entry of each torch.Tensor
correspond to a semantic class id.
Converts the output of BeitForSemanticSegmentation into semantic segmentation maps. Only supports PyTorch.
BeitModel
class transformers.BeitModel
< source >( config: BeitConfig add_pooling_layer: bool = True )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Beit Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: typing.Optional[torch.Tensor] = None
bool_masked_pos: typing.Optional[torch.BoolTensor] = None
head_mask: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.models.beit.modeling_beit.BeitModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using BeitFeatureExtractor. See BeitFeatureExtractor.call() for details. -
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.beit.modeling_beit.BeitModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.models.beit.modeling_beit.BeitModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BeitConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) — Average of the last layer hidden states of the patch tokens (excluding the [CLS] token) if config.use_mean_pooling is set to True. If set to False, then the final hidden state of the [CLS] token will be returned. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BeitModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import BeitFeatureExtractor, BeitModel
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 197, 768]
BeitForMaskedImageModeling
class transformers.BeitForMaskedImageModeling
< source >( config: BeitConfig )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Beit Model transformer with a ‘language’ modeling head on top. BEiT does masked image modeling by predicting visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT predict RGB pixel values. As a result, this class is incompatible with AutoModelForMaskedImageModeling, so you will need to use BeitForMaskedImageModeling directly if you wish to do masked image modeling with BEiT. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: typing.Optional[torch.Tensor] = None
bool_masked_pos: typing.Optional[torch.BoolTensor] = None
head_mask: typing.Optional[torch.Tensor] = None
labels: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using BeitFeatureExtractor. See BeitFeatureExtractor.call() for details. -
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
bool_masked_pos (
torch.BoolTensor
of shape(batch_size, num_patches)
) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0). -
labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MaskedLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BeitConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Masked language modeling (MLM) loss. -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BeitForMaskedImageModeling forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, logits = outputs.loss, outputs.logits
>>> list(logits.shape)
[1, 196, 8192]
BeitForImageClassification
class transformers.BeitForImageClassification
< source >( config: BeitConfig )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet.
This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: typing.Optional[torch.Tensor] = None
head_mask: typing.Optional[torch.Tensor] = None
labels: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using BeitFeatureExtractor. See BeitFeatureExtractor.call() for details. -
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.ImageClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BeitConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage. -
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, patch_size, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BeitForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import BeitFeatureExtractor, BeitForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
BeitForSemanticSegmentation
class transformers.BeitForSemanticSegmentation
< source >( config: BeitConfig )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: typing.Optional[torch.Tensor] = None
head_mask: typing.Optional[torch.Tensor] = None
labels: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.modeling_outputs.SemanticSegmenterOutput or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using BeitFeatureExtractor. See BeitFeatureExtractor.call() for details. -
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensor
of shape(batch_size, height, width)
, optional) — Ground truth semantic segmentation maps for computing the loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels > 1
, a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.SemanticSegmenterOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SemanticSegmenterOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BeitConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels, logits_height, logits_width)
) — Classification scores for each pixel.The logits returned do not necessarily have the same size as the
pixel_values
passed as inputs. This is to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the original image size as post-processing. You should always check your logits shape and resize as needed. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, patch_size, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, patch_size, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BeitForSemanticSegmentation forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoFeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
FlaxBeitModel
class transformers.FlaxBeitModel
< source >( config: BeitConfig input_shape = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
-
dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare Beit Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
pixel_values
bool_masked_pos = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling or tuple(torch.FloatTensor)
Returns
transformers.models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.beit.configuration_beit.BeitConfig'>
) and inputs.
- last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. - pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) — Average of the last layer hidden states of the patch tokens (excluding the [CLS] token) if config.use_mean_pooling is set to True. If set to False, then the final hidden state of the [CLS] token will be returned. - hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs. - attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBeitPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import BeitFeatureExtractor, FlaxBeitModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBeitForMaskedImageModeling
class transformers.FlaxBeitForMaskedImageModeling
< source >( config: BeitConfig input_shape = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
-
dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
Beit Model transformer with a ‘language’ modeling head on top (to predict visual tokens).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
pixel_values
bool_masked_pos = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
Returns
transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxMaskedLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.beit.configuration_beit.BeitConfig'>
) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBeitPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
bool_masked_pos (numpy.ndarray
of shape (batch_size, num_patches)
):
Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Examples:
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBeitForImageClassification
class transformers.FlaxBeitForImageClassification
< source >( config: BeitConfig input_shape = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (BeitConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
-
dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
pixel_values
bool_masked_pos = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
→
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
Returns
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.beit.configuration_beit.BeitConfig'>
) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBeitPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import BeitFeatureExtractor, FlaxBeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])