Configuration
Schedulers from SchedulerMixin and models from ModelMixin inherit from ConfigMixin which conveniently takes care of storing all the parameters that are
passed to their respective __init__
methods in a JSON-configuration file.
ConfigMixin
Base class for all configuration classes. Stores all configuration parameters under self.config
Also handles all
methods for loading/downloading/saving classes inheriting from ConfigMixin with
Class attributes:
- config_name (
str
) — A filename under which the config should stored when calling save_config() (should be overridden by parent class). - ignore_for_config (
List[str]
) — A list of attributes that should not be saved in the config (should be overridden by subclass). - has_compatibles (
bool
) — Whether the class has compatible classes (should be overridden by subclass). - _deprecated_kwargs (
List[str]
) — Keyword arguments that are deprecated. Note that the init function should only have akwargs
argument if at least one argument is deprecated (should be overridden by subclass).
load_config
< source >(
pretrained_model_name_or_path: typing.Union[str, os.PathLike]
return_unused_kwargs = False
return_commit_hash = False
**kwargs
)
→
dict
Parameters
-
pretrained_model_name_or_path (
str
oros.PathLike
, optional) — Can be either:- A string, the model id (for example
google/ddpm-celebahq-256
) of a pretrained model hosted on the Hub. - A path to a directory (for example
./my_model_directory
) containing model weights saved with save_config().
- A string, the model id (for example
-
cache_dir (
Union[str, os.PathLike]
, optional) — Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. -
force_download (
bool
, optional, defaults toFalse
) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. -
resume_download (
bool
, optional, defaults toFalse
) — Whether or not to resume downloading the model weights and configuration files. If set to False, any incompletely downloaded files are deleted. -
proxies (
Dict[str, str]
, optional) — A dictionary of proxy servers to use by protocol or endpoint, for example,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request. -
output_loading_info(
bool
, optional, defaults toFalse
) — Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. -
local_files_only(
bool
, optional, defaults toFalse
) — Whether to only load local model weights and configuration files or not. If set to True, the model won’t be downloaded from the Hub. -
use_auth_token (
str
or bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue
, the token generated fromdiffusers-cli login
(stored in~/.huggingface
) is used. -
revision (
str
, optional, defaults to"main"
) — The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. -
subfolder (
str
, optional, defaults to""
) — The subfolder location of a model file within a larger model repository on the Hub or locally. -
return_unused_kwargs (
bool
, optional, defaults to `False) — Whether unused keyword arguments of the config are returned. -
return_commit_hash (
bool
, optional, defaults toFalse) -- Whether the
commit_hash` of the loaded configuration are returned.
Returns
dict
A dictionary of all the parameters stored in a JSON configuration file.
Load a model or scheduler configuration.
To use private or gated models, log-in with
huggingface-cli login
. You can also activate the special
“offline-mode” to use this method in a
firewalled environment.
from_config
< source >( config: typing.Union[diffusers.configuration_utils.FrozenDict, typing.Dict[str, typing.Any]] = None return_unused_kwargs = False **kwargs ) → ModelMixin or SchedulerMixin
Parameters
-
config (
Dict[str, Any]
) — A config dictionary from which the Python class will be instantiated. Make sure to only load configuration files of compatible classes. -
return_unused_kwargs (
bool
, optional, defaults toFalse
) — Whether kwargs that are not consumed by the Python class should be returned or not. -
kwargs (remaining dictionary of keyword arguments, optional) —
Can be used to update the configuration object (after it is loaded) and initiate the Python class.
**kwargs
are directly passed to the underlying scheduler/model’s__init__
method and eventually overwrite same named arguments inconfig
.
Returns
A model or scheduler object instantiated from a config dictionary.
Instantiate a Python class from a config dictionary.
Examples:
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
>>> # Download scheduler from huggingface.co and cache.
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
>>> # Instantiate DDIM scheduler class with same config as DDPM
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
>>> # Instantiate PNDM scheduler class with same config as DDPM
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
save_config
< source >( save_directory: typing.Union[str, os.PathLike] push_to_hub: bool = False **kwargs )
Save a configuration object to the directory save_directory
, so that it can be re-loaded using the
from_config() class method.
to_json_file
< source >( json_file_path: typing.Union[str, os.PathLike] )
Save this instance to a JSON file.
to_json_string
< source >(
)
→
str
Returns
str
String containing all the attributes that make up this configuration instance in JSON format.
Serializes this instance to a JSON string.