Diffusers documentation

Latent Diffusion

You are viewing v0.16.0 version. A newer version v0.31.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Latent Diffusion

Overview

Latent Diffusion was proposed in High-Resolution Image Synthesis with Latent Diffusion Models by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

The abstract of the paper is the following:

By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.

The original codebase can be found here.

Tips:

Available Pipelines:

Pipeline Tasks Colab
pipeline_latent_diffusion.py Text-to-Image Generation -
pipeline_latent_diffusion_superresolution.py Super Resolution -

Examples:

LDMTextToImagePipeline

class diffusers.LDMTextToImagePipeline

< >

( vqvae: typing.Union[diffusers.models.vq_model.VQModel, diffusers.models.autoencoder_kl.AutoencoderKL] bert: PreTrainedModel tokenizer: PreTrainedTokenizer unet: typing.Union[diffusers.models.unet_2d.UNet2DModel, diffusers.models.unet_2d_condition.UNet2DConditionModel] scheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler] )

Parameters

  • vqvae (VQModel) — Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
  • bert (LDMBertModel) — Text-encoder model based on BERT architecture.
  • tokenizer (transformers.BertTokenizer) — Tokenizer of class BertTokenizer.
  • unet (UNet2DConditionModel) — Conditional U-Net architecture to denoise the encoded image latents.
  • scheduler (SchedulerMixin) — A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

__call__

< >

( prompt: typing.Union[str, typing.List[str]] height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: typing.Optional[int] = 50 guidance_scale: typing.Optional[float] = 1.0 eta: typing.Optional[float] = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True **kwargs ) ImagePipelineOutput or tuple

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.
  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image.
  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 1.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt at the, usually at the expense of lower image quality.
  • generator (torch.Generator, optional) — One or a list of torch generator(s) to make generation deterministic.
  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.
  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.
  • return_dict (bool, optional) — Whether or not to return a ImagePipelineOutput instead of a plain tuple.

Returns

ImagePipelineOutput or tuple

~pipelines.utils.ImagePipelineOutput if return_dict is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.

LDMSuperResolutionPipeline

class diffusers.LDMSuperResolutionPipeline

< >

( vqvae: VQModel unet: UNet2DModel scheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler] )

Parameters

A pipeline for image super-resolution using Latent

This class inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

__call__

< >

( image: typing.Union[torch.Tensor, PIL.Image.Image] = None batch_size: typing.Optional[int] = 1 num_inference_steps: typing.Optional[int] = 100 eta: typing.Optional[float] = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True ) ImagePipelineOutput or tuple

Parameters

  • image (torch.Tensor or PIL.Image.Image) — Image, or tensor representing an image batch, that will be used as the starting point for the process.
  • batch_size (int, optional, defaults to 1) — Number of images to generate.
  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.
  • generator (torch.Generator, optional) — One or a list of torch generator(s) to make generation deterministic.
  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.
  • return_dict (bool, optional) — Whether or not to return a ImagePipelineOutput instead of a plain tuple.

Returns

ImagePipelineOutput or tuple

~pipelines.utils.ImagePipelineOutput if return_dict is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.