ControlNet with Stable Diffusion 3
StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.
ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that’ll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with “zero convolutions” (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.
This controlnet code is mainly implemented by The InstantX Team. The inpainting-related code was developed by The Alimama Creative Team. You can find pre-trained checkpoints for SD3-ControlNet in the table below:
ControlNet type | Developer | Link |
---|---|---|
Canny | The InstantX Team | Link |
Depth | The InstantX Team | Link |
Pose | The InstantX Team | Link |
Tile | The InstantX Team | Link |
Inpainting | The AlimamaCreative Team | link |
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
StableDiffusion3ControlNetPipeline
class diffusers.StableDiffusion3ControlNetPipeline
< source >( transformer: SD3Transformer2DModel scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModelWithProjection tokenizer: CLIPTokenizer text_encoder_2: CLIPTextModelWithProjection tokenizer_2: CLIPTokenizer text_encoder_3: T5EncoderModel tokenizer_3: T5TokenizerFast controlnet: typing.Union[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel, typing.List[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel], typing.Tuple[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel], diffusers.models.controlnets.controlnet_sd3.SD3MultiControlNetModel] )
Parameters
- transformer (SD3Transformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModelWithProjection
) — CLIP, specifically the clip-vit-large-patch14 variant, with an additional added projection layer that is initialized with a diagonal matrix with thehidden_size
as its dimension. - text_encoder_2 (
CLIPTextModelWithProjection
) — CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant. - text_encoder_3 (
T5EncoderModel
) — Frozen text-encoder. Stable Diffusion 3 uses T5, specifically the t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
CLIPTokenizer
) — Second Tokenizer of class CLIPTokenizer. - tokenizer_3 (
T5TokenizerFast
) — Tokenizer of class T5Tokenizer. - controlnet (SD3ControlNetModel or
List[SD3ControlNetModel]
orSD3MultiControlNetModel
) — Provides additional conditioning to theunet
during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None prompt_3: typing.Union[str, typing.List[str], NoneType] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 28 timesteps: typing.List[int] = None guidance_scale: float = 7.0 control_guidance_start: typing.Union[float, typing.List[float]] = 0.0 control_guidance_end: typing.Union[float, typing.List[float]] = 1.0 control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None controlnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0 controlnet_pooled_projections: typing.Optional[torch.FloatTensor] = None negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: typing.Optional[int] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 256 ) → ~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_3
andtext_encoder_3
. If not defined,prompt
is will be used instead - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - timesteps (
List[int]
, optional) — Custom timesteps to use for the denoising process with schedulers which support atimesteps
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. Must be in descending order. - guidance_scale (
float
, optional, defaults to 5.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - control_guidance_start (
float
orList[float]
, optional, defaults to 0.0) — The percentage of total steps at which the ControlNet starts applying. - control_guidance_end (
float
orList[float]
, optional, defaults to 1.0) — The percentage of total steps at which the ControlNet stops applying. - control_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
orList[List[PIL.Image.Image]]
): The ControlNet input condition to provide guidance to theunet
for generation. If the type is specified astorch.Tensor
, it is passed to ControlNet as is.PIL.Image.Image
can also be accepted as an image. The dimensions of the output image defaults toimage
’s dimensions. If height and/or width are passed,image
is resized accordingly. If multiple ControlNets are specified ininit
, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. - controlnet_conditioning_scale (
float
orList[float]
, optional, defaults to 1.0) — The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scale
before they are added to the residual in the originalunet
. If multiple ControlNets are specified ininit
, you can set the corresponding scale as a list. - controlnet_pooled_projections (
torch.FloatTensor
of shape(batch_size, projection_dim)
) — Embeddings projected from the embeddings of controlnet input conditions. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used instead - negative_prompt_3 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used instead - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 256) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a
tuple
. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import StableDiffusion3ControlNetPipeline
>>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
>>> from diffusers.utils import load_image
>>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
>>> prompt = "A girl holding a sign that says InstantX"
>>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0]
>>> image.save("sd3.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] prompt_3: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None clip_skip: typing.Optional[int] = None max_sequence_length: int = 256 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_3
andtext_encoder_3
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in all the text-encoders. - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used in both text-encoders - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
StableDiffusion3ControlNetInpaintingPipeline
class diffusers.pipelines.StableDiffusion3ControlNetInpaintingPipeline
< source >( transformer: SD3Transformer2DModel scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModelWithProjection tokenizer: CLIPTokenizer text_encoder_2: CLIPTextModelWithProjection tokenizer_2: CLIPTokenizer text_encoder_3: T5EncoderModel tokenizer_3: T5TokenizerFast controlnet: typing.Union[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel, typing.List[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel], typing.Tuple[diffusers.models.controlnets.controlnet_sd3.SD3ControlNetModel], diffusers.models.controlnets.controlnet_sd3.SD3MultiControlNetModel] )
Parameters
- transformer (SD3Transformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModelWithProjection
) — CLIP, specifically the clip-vit-large-patch14 variant, with an additional added projection layer that is initialized with a diagonal matrix with thehidden_size
as its dimension. - text_encoder_2 (
CLIPTextModelWithProjection
) — CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant. - text_encoder_3 (
T5EncoderModel
) — Frozen text-encoder. Stable Diffusion 3 uses T5, specifically the t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
CLIPTokenizer
) — Second Tokenizer of class CLIPTokenizer. - tokenizer_3 (
T5TokenizerFast
) — Tokenizer of class T5Tokenizer. - controlnet (SD3ControlNetModel or
List[SD3ControlNetModel]
orSD3MultiControlNetModel
) — Provides additional conditioning to theunet
during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None prompt_3: typing.Union[str, typing.List[str], NoneType] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 28 timesteps: typing.List[int] = None guidance_scale: float = 7.0 control_guidance_start: typing.Union[float, typing.List[float]] = 0.0 control_guidance_end: typing.Union[float, typing.List[float]] = 1.0 control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None control_mask: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None controlnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0 controlnet_pooled_projections: typing.Optional[torch.FloatTensor] = None negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: typing.Optional[int] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 256 ) → ~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_3
andtext_encoder_3
. If not defined,prompt
is will be used instead - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - timesteps (
List[int]
, optional) — Custom timesteps to use for the denoising process with schedulers which support atimesteps
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. Must be in descending order. - guidance_scale (
float
, optional, defaults to 5.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - control_guidance_start (
float
orList[float]
, optional, defaults to 0.0) — The percentage of total steps at which the ControlNet starts applying. - control_guidance_end (
float
orList[float]
, optional, defaults to 1.0) — The percentage of total steps at which the ControlNet stops applying. - control_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be inpainted (which parts of the image to be masked out withcontrol_mask
and repainted according toprompt
). For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
. - control_mask (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to maskimage
. White pixels in the mask are repainted while black pixels are preserved. Ifmask_image
is a PIL image, it is converted to a single channel (luminance) before use. If it’s a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be(B, 1, H, W)
. And for numpy array would be for(B, H, W, 1)
,(B, H, W)
,(H, W, 1)
, or(H, W)
. - controlnet_conditioning_scale (
float
orList[float]
, optional, defaults to 1.0) — The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scale
before they are added to the residual in the originalunet
. If multiple ControlNets are specified ininit
, you can set the corresponding scale as a list. - controlnet_pooled_projections (
torch.FloatTensor
of shape(batch_size, projection_dim)
) — Embeddings projected from the embeddings of controlnet input conditions. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used instead - negative_prompt_3 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used instead - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 256) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a
tuple
. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers.utils import load_image, check_min_version
>>> from diffusers.pipelines import StableDiffusion3ControlNetInpaintingPipeline
>>> from diffusers.models.controlnet_sd3 import SD3ControlNetModel
>>> controlnet = SD3ControlNetModel.from_pretrained(
... "alimama-creative/SD3-Controlnet-Inpainting", use_safetensors=True, extra_conditioning_channels=1
... )
>>> pipe = StableDiffusion3ControlNetInpaintingPipeline.from_pretrained(
... "stabilityai/stable-diffusion-3-medium-diffusers",
... controlnet=controlnet,
... torch_dtype=torch.float16,
... )
>>> pipe.text_encoder.to(torch.float16)
>>> pipe.controlnet.to(torch.float16)
>>> pipe.to("cuda")
>>> image = load_image(
... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog.png"
... )
>>> mask = load_image(
... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog_mask.png"
... )
>>> width = 1024
>>> height = 1024
>>> prompt = "A cat is sitting next to a puppy."
>>> generator = torch.Generator(device="cuda").manual_seed(24)
>>> res_image = pipe(
... negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
... prompt=prompt,
... height=height,
... width=width,
... control_image=image,
... control_mask=mask,
... num_inference_steps=28,
... generator=generator,
... controlnet_conditioning_scale=0.95,
... guidance_scale=7,
... ).images[0]
>>> res_image.save(f"sd3.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] prompt_3: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None clip_skip: typing.Optional[int] = None max_sequence_length: int = 256 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_3
andtext_encoder_3
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in all the text-encoders. - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used in both text-encoders - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
StableDiffusion3PipelineOutput
class diffusers.pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput
< source >( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )
Output class for Stable Diffusion pipelines.