Diffusers documentation
Bria 3.2
Bria 3.2
Bria 3.2 is the next-generation commercial-ready text-to-image model. With just 4 billion parameters, it provides exceptional aesthetics and text rendering, evaluated to provide on par results to leading open-source models, and outperforming other licensed models. In addition to being built entirely on licensed data, 3.2 provides several advantages for enterprise and commercial use:
- Efficient Compute - the model is X3 smaller than the equivalent models in the market (4B parameters vs 12B parameters other open source models)
- Architecture Consistency: Same architecture as 3.1—ideal for users looking to upgrade without disruption.
- Fine-tuning Speedup: 2x faster fine-tuning on L40S and A100.
Original model checkpoints for Bria 3.2 can be found here. Github repo for Bria 3.2 can be found here.
If you want to learn more about the Bria platform, and get free traril access, please visit bria.ai.
Usage
As the model is gated, before using it with diffusers you first need to go to the Bria 3.2 Hugging Face page, fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate.
Use the command below to log in:
hf auth login
BriaPipeline
class diffusers.BriaPipeline
< source >( transformer: BriaTransformer2DModel scheduler: typing.Union[diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler, diffusers.schedulers.scheduling_utils.KarrasDiffusionSchedulers] vae: AutoencoderKL text_encoder: T5EncoderModel tokenizer: T5TokenizerFast image_encoder: CLIPVisionModelWithProjection = None feature_extractor: CLIPImageProcessor = None )
Parameters
- transformer (BriaTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
T5EncoderModel
) — Frozen text-encoder. Bria uses T5, specifically the t5-v1_1-xxl variant. - tokenizer (
T5TokenizerFast
) — Tokenizer of class T5Tokenizer.
Based on FluxPipeline with several changes:
- no pooled embeddings
- We use zero padding for prompts
- No guidance embedding since this is not a distilled version
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 30 timesteps: typing.List[int] = None guidance_scale: float = 5 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 128 clip_value: typing.Optional[float] = None normalize: bool = False ) → ~pipelines.bria.BriaPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - timesteps (
List[int]
, optional) — Custom timesteps to use for the denoising process with schedulers which support atimesteps
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. Must be in descending order. - guidance_scale (
float
, optional, defaults to 5.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.bria.BriaPipelineOutput
instead of a plain tuple. - attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 256) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.bria.BriaPipelineOutput
or tuple
~pipelines.bria.BriaPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import BriaPipeline
>>> pipe = BriaPipeline.from_pretrained("briaai/BRIA-3.2", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
# BRIA's T5 text encoder is sensitive to precision. We need to cast it to bfloat16 and keep the final layer in float32.
>>> pipe.text_encoder = pipe.text_encoder.to(dtype=torch.bfloat16)
>>> for block in pipe.text_encoder.encoder.block:
... block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
# BRIA's VAE is not supported in mixed precision, so we use float32.
>>> if pipe.vae.config.shift_factor == 0:
... pipe.vae.to(dtype=torch.float32)
>>> prompt = "Photorealistic food photography of a stack of fluffy pancakes on a white plate, with maple syrup being poured over them. On top of the pancakes are the words 'BRIA 3.2' in bold, yellow, 3D letters. The background is dark and out of focus."
>>> image = pipe(prompt).images[0]
>>> image.save("bria.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 128 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument.