File size: 10,102 Bytes
55d9b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import math
import os
import struct
import logging
from tqdm import tqdm
import csv
from collections import defaultdict
import pandas as pd

logger = logging.getLogger(__name__)

# Taken from here https://torchdrug.ai/docs/_modules/torchdrug/utils/file.html#download
def download(url, path, save_file=None, md5=None):
    """
    Download a file from the specified url.
    Skip the downloading step if there exists a file satisfying the given MD5.

    Parameters:
        url (str): URL to download
        path (str): path to store the downloaded file
        save_file (str, optional): name of save file. If not specified, infer the file name from the URL.
        md5 (str, optional): MD5 of the file
    """
    from six.moves.urllib.request import urlretrieve

    if save_file is None:
        save_file = os.path.basename(url)
        if "?" in save_file:
            save_file = save_file[:save_file.find("?")]
    save_file = os.path.join(path, save_file)

    if not os.path.exists(save_file) or compute_md5(save_file) != md5:
        logger.info("Downloading %s to %s" % (url, save_file))
        urlretrieve(url, save_file)
    return save_file



def smart_open(file_name, mode="rb"):
    """
    Open a regular file or a zipped file.

    This function can be used as drop-in replacement of the builtin function `open()`.

    Parameters:
        file_name (str): file name
        mode (str, optional): open mode for the file stream
    """
    import bz2
    import gzip

    extension = os.path.splitext(file_name)[1]
    if extension == '.bz2':
        return bz2.BZ2File(file_name, mode)
    elif extension == '.gz':
        return gzip.GzipFile(file_name, mode)
    else:
        return open(file_name, mode)


def extract(zip_file, member=None):
    """
    Extract files from a zip file. Currently, ``zip``, ``gz``, ``tar.gz``, ``tar`` file types are supported.

    Parameters:
        zip_file (str): file name
        member (str, optional): extract specific member from the zip file.
            If not specified, extract all members.
    """
    import gzip
    import shutil
    import zipfile
    import tarfile

    zip_name, extension = os.path.splitext(zip_file)
    if zip_name.endswith(".tar"):
        extension = ".tar" + extension
        zip_name = zip_name[:-4]
    save_path = os.path.dirname(zip_file)

    if extension == ".gz":
        member = os.path.basename(zip_name)
        members = [member]
        save_files = [os.path.join(save_path, member)]
        for _member, save_file in zip(members, save_files):
            with open(zip_file, "rb") as fin:
                fin.seek(-4, 2)
                file_size = struct.unpack("<I", fin.read())[0]
            with gzip.open(zip_file, "rb") as fin:
                if not os.path.exists(save_file) or file_size != os.path.getsize(save_file):
                    logger.info("Extracting %s to %s" % (zip_file, save_file))
                    with open(save_file, "wb") as fout:
                        shutil.copyfileobj(fin, fout)
    elif extension in [".tar.gz", ".tgz", ".tar"]:
        tar = tarfile.open(zip_file, "r")
        if member is not None:
            members = [member]
            save_files = [os.path.join(save_path, os.path.basename(member))]
            logger.info("Extracting %s from %s to %s" % (member, zip_file, save_files[0]))
        else:
            members = tar.getnames()
            save_files = [os.path.join(save_path, _member) for _member in members]
            logger.info("Extracting %s to %s" % (zip_file, save_path))
        for _member, save_file in zip(members, save_files):
            if tar.getmember(_member).isdir():
                os.makedirs(save_file, exist_ok=True)
                continue
            os.makedirs(os.path.dirname(save_file), exist_ok=True)
            if not os.path.exists(save_file) or tar.getmember(_member).size != os.path.getsize(save_file):
                with tar.extractfile(_member) as fin, open(save_file, "wb") as fout:
                    shutil.copyfileobj(fin, fout)
    elif extension == ".zip":
        zipped = zipfile.ZipFile(zip_file)
        if member is not None:
            members = [member]
            save_files = [os.path.join(save_path, os.path.basename(member))]
            logger.info("Extracting %s from %s to %s" % (member, zip_file, save_files[0]))
        else:
            members = zipped.namelist()
            save_files = [os.path.join(save_path, _member) for _member in members]
            logger.info("Extracting %s to %s" % (zip_file, save_path))
        for _member, save_file in zip(members, save_files):
            if zipped.getinfo(_member).is_dir():
                os.makedirs(save_file, exist_ok=True)
                continue
            os.makedirs(os.path.dirname(save_file), exist_ok=True)
            if not os.path.exists(save_file) or zipped.getinfo(_member).file_size != os.path.getsize(save_file):
                with zipped.open(_member, "r") as fin, open(save_file, "wb") as fout:
                    shutil.copyfileobj(fin, fout)
    else:
        raise ValueError("Unknown file extension `%s`" % extension)

    if len(save_files) == 1:
        return save_files[0]
    else:
        return save_path



def compute_md5(file_name, chunk_size=65536):
    """
    Compute MD5 of the file.

    Parameters:
        file_name (str): file name
        chunk_size (int, optional): chunk size for reading large files
    """
    import hashlib

    md5 = hashlib.md5()
    with open(file_name, "rb") as fin:
        chunk = fin.read(chunk_size)
        while chunk:
            md5.update(chunk)
            chunk = fin.read(chunk_size)
    return md5.hexdigest()



def get_line_count(file_name, chunk_size=8192*1024):
    """
    Get the number of lines in a file.

    Parameters:
        file_name (str): file name
        chunk_size (int, optional): chunk size for reading large files
    """
    count = 0
    with open(file_name, "rb") as fin:
        chunk = fin.read(chunk_size)
        while chunk:
            count += chunk.count(b"\n")
            chunk = fin.read(chunk_size)
    return count


class OPV:
    """
    Quantum mechanical calculations on organic photovoltaic candidate molecules.

    Statistics:
        - #Molecule: 94,576
        - #Regression task: 8

    Parameters:
        path (str): path to store the dataset
        verbose (int, optional): output verbose level
        **kwargs
    """

    train_url = "https://cscdata.nrel.gov/api/datasets/ad5d2c9a-af0a-4d72-b943-1e433d5750d6/download/" \
                "b69cf9a5-e7e0-405b-88cb-40df8007242e"
    valid_url = "https://cscdata.nrel.gov/api/datasets/ad5d2c9a-af0a-4d72-b943-1e433d5750d6/download/" \
                "1c8e7379-3071-4360-ba8e-0c6481c33d2c"
    test_url = "https://cscdata.nrel.gov/api/datasets/ad5d2c9a-af0a-4d72-b943-1e433d5750d6/download/" \
               "4ef40592-0080-4f00-9bb7-34b25f94962a"
    train_md5 = "16e439b7411ea0a8d3a56ba4802b61b1"
    valid_md5 = "3aa2ac62015932ca84661feb5d29adda"
    test_md5 = "bad072224f0755478f0729476ca99a33"
    target_fields = ["gap", "homo", "lumo", "spectral_overlap", "gap_extrapolated", "homo_extrapolated",
                     "lumo_extrapolated", "optical_lumo_extrapolated"]

    def read_csv(self, csv_file, smiles_field="smiles", target_fields=None, verbose=0):
        if target_fields is not None:
            target_fields = set(target_fields)

        with open(csv_file, "r") as fin:
            reader = csv.reader(fin)
            if verbose:
                reader = iter(tqdm(reader, "Loading %s" % csv_file, get_line_count(csv_file)))
            fields = next(reader)
            smiles = []
            targets = defaultdict(list)
            for i, values in enumerate(reader):
                if not any(values):
                    continue
                if smiles_field is None:
                    smiles.append("")
                for field, value in zip(fields, values):
                    if field == smiles_field:
                        smiles.append(value)
                    elif target_fields is None or field in target_fields:
                        pass
                        # value = eval(value)
                        # if value == "":
                        #     value = math.nan
                        # targets[field].append(value)

        return smiles, targets

    def __init__(self, path, verbose=1, **kwargs):
        path = os.path.expanduser(path)
        if not os.path.exists(path):
            os.makedirs(path)
        self.path = path

        train_zip_file = download(self.train_url, path, save_file="mol_train.csv.gz", md5=self.train_md5)
        valid_zip_file = download(self.valid_url, path, save_file="mol_valid.csv.gz", md5=self.valid_md5)
        test_zip_file = download(self.test_url, path, save_file="mol_test.csv.gz", md5=self.test_md5)
        train_file = extract(train_zip_file)
        valid_file = extract(valid_zip_file)
        test_file = extract(test_zip_file)

        train_smiles, train_targets = self.read_csv(train_file, smiles_field="smile", target_fields=self.target_fields)
        valid_smiles, valid_targets = self.read_csv(valid_file, smiles_field="smile", target_fields=self.target_fields)
        test_smiles, test_targets = self.read_csv(test_file, smiles_field="smile", target_fields=self.target_fields)
        self.num_train = len(train_smiles)
        self.num_valid = len(valid_smiles)
        self.num_test = len(test_smiles)

        smiles = train_smiles + valid_smiles + test_smiles
        targets = {k: train_targets[k] + valid_targets[k] + test_targets[k] for k in train_targets}

        # self.load_smiles(smiles, targets, verbose=verbose, **kwargs)
        print(smiles[:10])
        df_out = pd.DataFrame({"smiles": smiles})
        df_out.to_parquet(os.path.join(os.path.dirname(__file__), "opv.parquet"))


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cwd = os.path.join(os.path.dirname(__file__), "download")
    os.makedirs(cwd,exist_ok=True)
    d = OPV(cwd)