File size: 17,500 Bytes
55d9b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Demonstrator"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:sample:Compiling the model...\n"
     ]
    }
   ],
   "source": [
    "import rdkit\n",
    "from rdkit import Chem\n",
    "import rdkit.rdBase as rkrb\n",
    "import rdkit.RDLogger as rkl\n",
    "import os\n",
    "import torch \n",
    "import logging\n",
    "import numpy as np\n",
    "from plot_utils import check_metrics\n",
    "from sample import Sampler\n",
    "import pandas as pd\n",
    "\n",
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "\n",
    "if \"cuda\" in device:\n",
    "    # dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'\n",
    "    dtype = \"float16\" if torch.cuda.is_available() else \"float32\"\n",
    "else:\n",
    "    dtype = \"float32\"\n",
    "\n",
    "logger = rkl.logger()\n",
    "logger.setLevel(rkl.ERROR)\n",
    "rkrb.DisableLog(\"rdApp.error\")\n",
    "\n",
    "torch.set_num_threads(8)\n",
    "logging.basicConfig(level=logging.INFO)\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "sampler = Sampler(\n",
    "    load_path=os.path.join(\n",
    "        os.getcwd(), \"out\", \"llama2-M-Full-RSS.pt\"\n",
    "    ),\n",
    "    device=device,\n",
    "    seed=1234,\n",
    "    dtype=dtype,\n",
    "    compile=True,\n",
    ")\n",
    "\n",
    "    \n",
    "num_samples = 100\n",
    "df_comp = pd.read_parquet(os.path.join(os.getcwd(),\"data\",\"OrganiX13.parquet\"))\n",
    "df_comp = df_comp.sample(n=2_500_000)\n",
    "comp_context_dict = {c: df_comp[c].to_numpy() for c in [\"logp\", \"sascore\", \"mol_weight\"]} \n",
    "comp_smiles = df_comp[\"smiles\"]\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:root:Wrote file /home/ndobberstein/Projekte/llama2-molgen/chemiscope_gen.json\n"
     ]
    }
   ],
   "source": [
    "from typing import List, Dict\n",
    "import json\n",
    "from rdkit.Chem import AllChem\n",
    "\n",
    "@torch.no_grad()\n",
    "def convert_to_chemiscope(smiles_list : List[str], context_dict : Dict[str, List[float]]):\n",
    "    # For more details on the file format: https://chemiscope.org/docs/tutorial/input-reference.html\n",
    "\n",
    "    structures = []\n",
    "    remove_list = []\n",
    "    for i,smi in enumerate(smiles_list):\n",
    "        mol = Chem.MolFromSmiles(smi)\n",
    "        if mol is None:\n",
    "            logging.info(f\"Mol invalid: {smi} ! Skipping...\")\n",
    "            remove_list.append(i)\n",
    "            continue\n",
    "\n",
    "        res = AllChem.EmbedMolecule(mol,randomSeed=0xf00d, maxAttempts=20)\n",
    "        # res = AllChem.Compute2DCoords(mol)\n",
    "\n",
    "        if res != 0:\n",
    "            logging.info(f\"Could not calculate coordinates for {smi}! Skipping..\")\n",
    "            remove_list.append(i)\n",
    "            continue\n",
    "        \n",
    "\n",
    "        conf = list(mol.GetConformers())[0]\n",
    "        x,y,z = [],[],[]\n",
    "        symbols = []\n",
    "        for atom, coords in zip(mol.GetAtoms(), conf.GetPositions()):\n",
    "            symbols.append(atom.GetSymbol())\n",
    "            x.append(coords[0])\n",
    "            y.append(coords[1])\n",
    "            z.append(coords[2])\n",
    "        \n",
    "        structures.append({\n",
    "            \"size\": len(x),\n",
    "            \"names\": symbols,\n",
    "            \"x\": x,\n",
    "            \"y\": y,\n",
    "            \"z\" : z\n",
    "        })\n",
    "\n",
    "\n",
    "\n",
    "    properties = {}\n",
    "    \n",
    "    for c in context_dict:\n",
    "        properties[c] = {\n",
    "            \"target\": \"structure\",\n",
    "            \"values\": [v for i, v in enumerate(context_dict[c]) if i not in remove_list]\n",
    "        }\n",
    "        \n",
    "\n",
    "\n",
    "    \n",
    "    data = {\n",
    "        \"meta\": {\n",
    "            # // the name of the dataset\n",
    "            \"name\": \"Test Dataset\",\n",
    "            # // description of the dataset, OPTIONAL\n",
    "            \"description\": \"This contains data from generated molecules\",\n",
    "            # // authors of the dataset, OPTIONAL\n",
    "            \"authors\": [\"Niklas Dobberstein, niklas.dobberstein@scai.fraunhofer.de\"],\n",
    "            # // references for the dataset, OPTIONAL\n",
    "            \"references\": [\n",
    "                \"\",\n",
    "            ],\n",
    "        \n",
    "        },\n",
    "        \"properties\": properties,\n",
    "        \"structures\": structures\n",
    "    }\n",
    "    \n",
    "    out_path = os.path.join(os.getcwd(), \"chemiscope_gen.json\")\n",
    "    with open(out_path, \"w\") as f:\n",
    "        json.dump(data, f)\n",
    "\n",
    "    logging.info(f\"Wrote file {out_path}\")\n",
    "\n",
    "convert_to_chemiscope([\n",
    "    \"CC=O\",\n",
    "    \"s1ccnc1\"\n",
    "], {\"logp\": [1.0,2.0], \"sascore\": [1.5,-2.0]})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8b28a4e692de4bb48fde10a88d9727ba",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(Checkbox(value=False, description='logp'), Checkbox(value=False, description='sascore'), Checkb…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "62331a62f2bf4d08a3a202ad277c6d92",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(FloatSlider(value=0.0, description='logp:', max=7.0, min=-4.0, step=0.5), FloatSlider(value=2.0…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2d498af39f4046b0a5bb92080361dfec",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Text(value='', description='Context SMI:')"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ed8a755253444e9c83dc27c5f830588b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "FloatSlider(value=0.8, description='Temperature:', max=2.0)"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "139e7d1e40984101800e2cbb740280b0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Button(description='Generate', style=ButtonStyle())"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4d119a3b477243ac916478a6ec2a55c7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "dfce28d4f6a3414c838e6542ffb43fc6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "from IPython.display import display, clear_output, HTML\n",
    "import numpy as np\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from rdkit import Chem\n",
    "from rdkit.Chem import Draw\n",
    "import logging\n",
    "from plot_utils import calc_context_from_smiles\n",
    "\n",
    "# Define the context_cols options and create checkboxes for them\n",
    "context_cols_options = [\"logp\", \"sascore\", \"mol_weight\"]\n",
    "context_cols_checkboxes = [widgets.Checkbox(description=col, value=False) for col in context_cols_options]\n",
    "\n",
    "# Create a text input for context_smi\n",
    "context_smi_input = widgets.Text(description=\"Context SMI:\", value=\"\")\n",
    "\n",
    "# Create sliders for temperature and context_cols values\n",
    "temperature_slider = widgets.FloatSlider(description=\"Temperature:\", min=0, max=2.0, step=0.1, value=0.8)\n",
    "\n",
    "logp_slider = widgets.FloatSlider(description=\"logp:\", min=-4, max=7, step=0.5, value=0.0)\n",
    "sascore_slider = widgets.FloatSlider(description=\"sascore:\", min=1, max=10, step=0.5, value=2.0)\n",
    "mol_weight_slider = widgets.FloatSlider(description=\"mol_weight:\", min=0.5, max=10, step=0.5, value=3.0)\n",
    "\n",
    "# Create a button to generate the code and display SMILES\n",
    "generate_button = widgets.Button(description=\"Generate\")\n",
    "\n",
    "# Create an output widget for displaying generated information\n",
    "output = widgets.Output()\n",
    "\n",
    "# Create an output widget for displaying the RDKit molecules\n",
    "molecule_output = widgets.Output()\n",
    "\n",
    "@torch.no_grad()\n",
    "def generate_code(_):\n",
    "    with output:\n",
    "        clear_output(wait=False)\n",
    "        # logging.info(\"Parameters used in generation:\")\n",
    "        \n",
    "        # Get the selected context_cols\n",
    "        selected_context_cols = [col for col, checkbox in zip(context_cols_options, context_cols_checkboxes) if checkbox.value]\n",
    "        # logging.info(f\"Context Cols: {selected_context_cols}\")\n",
    "        \n",
    "        # Get the values of context_smi and temperature from the sliders\n",
    "        context_smi = context_smi_input.value.strip()\n",
    "        temperature = temperature_slider.value\n",
    "        # logging.info(f\"Context Smiles: {context_smi}\")\n",
    "        # logging.info(f\"Temperature: {temperature}\")\n",
    "        \n",
    "        # Get the values of logp, sascore, and mol_weight from the sliders\n",
    "        context_dict = {} if len(selected_context_cols) != 0 else None\n",
    "        for c in selected_context_cols:\n",
    "            if c == \"logp\":\n",
    "                val = logp_slider.value\n",
    "            elif c == \"sascore\":\n",
    "                val = sascore_slider.value\n",
    "            else:\n",
    "                val = mol_weight_slider.value\n",
    "            val = round(val, 2)\n",
    "            context_dict[c] = val*torch.ones((num_samples,),device=device,dtype=torch.float)\n",
    "            # logging.info(f\"{c}: {val}\")\n",
    "        \n",
    "        # Generate SMILES using the provided context\n",
    "        smiles, context = sampler.generate(\n",
    "            context_cols=context_dict,\n",
    "            context_smi=context_smi,\n",
    "            start_smiles=None,\n",
    "            num_samples=num_samples,\n",
    "            max_new_tokens=256,\n",
    "            temperature=temperature,\n",
    "            top_k=25,\n",
    "            total_gen_steps=int(np.ceil(num_samples / 1000)),\n",
    "            return_context=True\n",
    "        )\n",
    "        \n",
    "        with open(os.path.join(os.getcwd(), \"gen_smiles.txt\"), \"w\") as f:\n",
    "            for s in smiles:\n",
    "                f.write(f\"{s}\\n\")\n",
    "        # Display SMILES as RDKit molecules\n",
    "        display_molecules(smiles, context)\n",
    "\n",
    "\n",
    "\n",
    "def display_molecules(smiles_list, context_dict):\n",
    "    with molecule_output:\n",
    "        clear_output(wait=False)\n",
    "        molecules = [Chem.MolFromSmiles(smiles) for smiles in smiles_list]\n",
    "        \n",
    "        # Convert RDKit molecules to images and store them in a list\n",
    "        images = [Draw.MolToImage(mol) for mol in molecules]\n",
    "        \n",
    "        # Create a subplot grid to display the images\n",
    "        num_images = len(images)\n",
    "        num_cols = 5  # Number of columns in the grid\n",
    "        num_rows = (num_images + num_cols - 1) // num_cols  # Calculate the number of rows\n",
    "        \n",
    "        fig, axes = plt.subplots(num_rows, num_cols, figsize=(25, 25))\n",
    "        fig.subplots_adjust(hspace=0.5)\n",
    "        calculated_context = {c:[] for c in context_dict}\n",
    "        for i, ax in enumerate(axes.flat):\n",
    "            if i < num_images:\n",
    "                ax.imshow(images[i])\n",
    "                for j, c in enumerate(context_dict):\n",
    "                    smiles = smiles_list[i]\n",
    "                    smi_con = round(calc_context_from_smiles([smiles], c)[0],2)\n",
    "                    calculated_context[c].append(smi_con)\n",
    "                    ax.text(0.5, -0.1 * j , f\"{c}: {context_dict[c][i]} vs {smi_con}\", transform=ax.transAxes, fontsize=10, ha='center')\n",
    "                \n",
    "                ax.axis('off')\n",
    "            else:\n",
    "                fig.delaxes(ax)  # Remove empty subplots if there are more rows than images\n",
    "        \n",
    "\n",
    "        if len(context_dict) >= 2:\n",
    "            convert_to_chemiscope(smiles_list, calculated_context)\n",
    "\n",
    "        plt.savefig(\"gen_mols.png\")\n",
    "        plt.show()\n",
    "\n",
    "# Attach the generate_code function to the button's click event\n",
    "generate_button.on_click(generate_code)\n",
    "\n",
    "# Display the widgets\n",
    "display(widgets.HBox(context_cols_checkboxes))\n",
    "display(widgets.HBox((logp_slider, sascore_slider, mol_weight_slider)))\n",
    "\n",
    "display(context_smi_input)\n",
    "display(temperature_slider)\n",
    "display(generate_button)\n",
    "display(output)\n",
    "display(molecule_output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ea96e00e0ea8448d97906ec965f04788",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Batch:   0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "77ba2d72172846e18572c94bc5b3bd6f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generation:   0%|          | 0/256 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:sample:Number valid generated: 68.0 %\n",
      "INFO:sample:---------------\n"
     ]
    }
   ],
   "source": [
    "selected_context_cols = [\"logp\", \"sascore\", \"mol_weight\"]\n",
    "num_samples = 25\n",
    "context_dict = {} if len(selected_context_cols) != 0 else None\n",
    "for c in selected_context_cols:\n",
    "    if c == \"logp\":\n",
    "        v = 0.5 * torch.randint(\n",
    "            -8, 14, (num_samples,), device=device, dtype=torch.float\n",
    "        )\n",
    "        context_dict[c] = v.sort()[0]\n",
    "    elif c == \"sascore\":\n",
    "        v = 0.5 * torch.randint(\n",
    "            1, 20, (num_samples,), device=device, dtype=torch.float\n",
    "        )\n",
    "        context_dict[c] = v.sort()[0]\n",
    "    else:\n",
    "        v = 0.5 * torch.randint(\n",
    "            1, 20, (num_samples,), device=device, dtype=torch.float\n",
    "        )\n",
    "        \n",
    "        context_dict[c] = v.sort()[0]\n",
    "    # logging.info(f\"{c}: {val}\")\n",
    "\n",
    "# Generate SMILES using the provided context\n",
    "smiles, context = sampler.generate(\n",
    "    context_cols=context_dict,\n",
    "    context_smi=None,\n",
    "    start_smiles=None,\n",
    "    num_samples=num_samples,\n",
    "    max_new_tokens=256,\n",
    "    temperature=0.8,\n",
    "    top_k=25,\n",
    "    total_gen_steps=int(np.ceil(num_samples / 1000)),\n",
    "    return_context=True\n",
    ")\n",
    "\n",
    "# Display SMILES as RDKit molecules\n",
    "display_molecules(smiles, context)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "torch2-bachelor",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.18"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}