starclass_modernbert
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2026
- Accuracy: 0.9524
- Precision: 0.9545
- Recall: 0.9524
- F1: 0.9529
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.0385 | 1.0 | 16 | 0.2928 | 0.9048 | 0.9188 | 0.9048 | 0.9057 |
0.1931 | 2.0 | 32 | 0.1816 | 0.9206 | 0.9284 | 0.9206 | 0.9222 |
0.0984 | 3.0 | 48 | 0.2056 | 0.9365 | 0.9384 | 0.9365 | 0.9370 |
0.0027 | 4.0 | 64 | 0.1988 | 0.9524 | 0.9545 | 0.9524 | 0.9529 |
0.0003 | 5.0 | 80 | 0.2026 | 0.9524 | 0.9545 | 0.9524 | 0.9529 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for dnttestmee/starclass_modernbert
Base model
answerdotai/ModernBERT-base