Edit model card

Whisper Large - Denis Musinguzi

This model is a fine-tuned version of openai/whisper-large on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2966
  • Wer: 0.2467
  • Cer: 0.0700

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.6329 0.61 1600 0.0878 0.3515 0.3385
0.2241 1.22 3200 0.0589 0.3045 0.2517
0.1618 1.82 4800 0.0707 0.2801 0.2645
0.1109 2.43 6400 0.0774 0.2870 0.2580
0.0837 3.04 8000 0.0597 0.2900 0.2333
0.045 3.65 9600 0.2966 0.2467 0.0700

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dmusingu/WHISPER-MEDIUM-LUGANDA-ASR-CV-14

Finetuned
(46)
this model

Dataset used to train dmusingu/WHISPER-MEDIUM-LUGANDA-ASR-CV-14

Evaluation results