meditron-7b-olaph / README.md
dmis-lab's picture
Upload 18 files
4ec7d43 verified
|
raw
history blame
1.8 kB
metadata
license: llama2
base_model: Minbyul/meditron-7b-wo-kqa_golden-iter-sft-step1
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: meditron-7b-wo-kqa_golden-iter-dpo-step2
    results: []

meditron-7b-wo-kqa_golden-iter-dpo-step2

This model is a fine-tuned version of Minbyul/meditron-7b-wo-kqa_golden-iter-sft-step1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6808
  • Rewards/chosen: 0.0082
  • Rewards/rejected: 0.0077
  • Rewards/accuracies: 0.5625
  • Rewards/margins: 0.0005
  • Logps/rejected: -631.7355
  • Logps/chosen: -407.7206
  • Logits/rejected: -1.1718
  • Logits/chosen: -1.2239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2