SmolLM_1_7B_Instruct_qlora_nf4-plaba

This model is a fine-tuned version of HuggingFaceTB/SmolLM-1.7B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.8 1 1.9677
No log 1.6 2 1.9588
No log 2.4 3 1.9242
No log 4.0 5 1.8088
No log 4.8 6 1.7755
No log 5.6 7 1.7593
No log 6.4 8 1.7526
1.8621 8.0 10 1.7491

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dmariko/SmolLM_1_7B_Instruct_qlora_nf4-plaba

Adapter
(6)
this model

Collection including dmariko/SmolLM_1_7B_Instruct_qlora_nf4-plaba