distilroberta-base-mapa_coarse-ner

This model is a fine-tuned version of distilroberta-base on the lextreme dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1020
  • Precision: 0.7441
  • Recall: 0.5805
  • F1: 0.6522
  • Accuracy: 0.9872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0343 1.0 1739 0.0694 0.6342 0.5205 0.5718 0.9841
0.0263 2.0 3478 0.0705 0.7961 0.5235 0.6317 0.9865
0.0183 3.0 5217 0.0670 0.7417 0.5313 0.6191 0.9864
0.015 4.0 6956 0.0632 0.7237 0.5850 0.6470 0.9869
0.0137 5.0 8695 0.0663 0.7311 0.6064 0.6629 0.9872
0.011 6.0 10434 0.0703 0.7163 0.5877 0.6457 0.9868
0.0096 7.0 12173 0.0799 0.7511 0.5676 0.6466 0.9871
0.0071 8.0 13912 0.0770 0.7386 0.5640 0.6396 0.9868
0.0068 9.0 15651 0.0827 0.7285 0.5674 0.6379 0.9868
0.0057 10.0 17390 0.0897 0.7611 0.5719 0.6531 0.9872
0.0053 11.0 19129 0.0940 0.7614 0.5627 0.6471 0.9871
0.004 12.0 20868 0.0874 0.7184 0.6084 0.6588 0.9873
0.0035 13.0 22607 0.0986 0.7513 0.5766 0.6525 0.9872
0.003 14.0 24346 0.1012 0.7396 0.5805 0.6505 0.9871
0.0026 15.0 26085 0.1020 0.7441 0.5805 0.6522 0.9872

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
16
Safetensors
Model size
81.5M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results