Edit model card

20230824002455

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7440
  • Accuracy: 0.7473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 11
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0306 1.0 623 0.6949 0.4729
0.8552 2.0 1246 0.7454 0.5596
0.9623 3.0 1869 0.8165 0.4874
0.8291 4.0 2492 1.1894 0.5704
0.8201 5.0 3115 0.6677 0.6823
0.8297 6.0 3738 0.6379 0.7256
0.7792 7.0 4361 0.6572 0.6931
0.6925 8.0 4984 0.6975 0.6498
0.7243 9.0 5607 0.7871 0.6679
0.69 10.0 6230 0.7707 0.7148
0.6492 11.0 6853 0.7202 0.7004
0.6448 12.0 7476 0.6862 0.7329
0.6571 13.0 8099 0.6079 0.7256
0.6558 14.0 8722 0.8183 0.7329
0.5996 15.0 9345 0.5783 0.7256
0.5494 16.0 9968 0.5463 0.7473
0.4964 17.0 10591 0.7906 0.7040
0.4914 18.0 11214 0.5334 0.7220
0.4933 19.0 11837 0.6681 0.7329
0.4655 20.0 12460 0.8837 0.7401
0.4432 21.0 13083 0.7407 0.7473
0.4051 22.0 13706 0.7213 0.7509
0.4018 23.0 14329 0.8420 0.7365
0.3745 24.0 14952 0.6421 0.7365
0.3558 25.0 15575 0.5727 0.7437
0.3325 26.0 16198 0.6941 0.7545
0.3471 27.0 16821 0.8213 0.7545
0.3405 28.0 17444 0.7249 0.7292
0.3079 29.0 18067 0.5829 0.7545
0.3136 30.0 18690 0.7057 0.7617
0.3152 31.0 19313 0.7746 0.7509
0.2989 32.0 19936 0.6028 0.7617
0.2657 33.0 20559 0.8212 0.7509
0.2703 34.0 21182 0.7015 0.7401
0.2562 35.0 21805 0.5706 0.7581
0.2738 36.0 22428 0.7036 0.7690
0.2404 37.0 23051 0.6888 0.7545
0.2595 38.0 23674 0.7086 0.7437
0.245 39.0 24297 0.7283 0.7401
0.2279 40.0 24920 0.7231 0.7401
0.2288 41.0 25543 0.6915 0.7365
0.2166 42.0 26166 0.8110 0.7329
0.219 43.0 26789 0.7984 0.7437
0.1935 44.0 27412 0.8829 0.7401
0.2105 45.0 28035 0.7270 0.7545
0.2079 46.0 28658 0.8026 0.7365
0.1859 47.0 29281 0.6536 0.7617
0.2211 48.0 29904 0.7410 0.7401
0.1862 49.0 30527 0.8433 0.7401
0.2015 50.0 31150 0.6761 0.7437
0.1921 51.0 31773 0.7471 0.7545
0.1899 52.0 32396 0.8135 0.7437
0.188 53.0 33019 0.7556 0.7365
0.1771 54.0 33642 0.7566 0.7365
0.1697 55.0 34265 0.7515 0.7509
0.185 56.0 34888 0.7795 0.7437
0.177 57.0 35511 0.7455 0.7509
0.1663 58.0 36134 0.7345 0.7509
0.1722 59.0 36757 0.7430 0.7509
0.1696 60.0 37380 0.7440 0.7473

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dkqjrm/20230824002455