File size: 3,073 Bytes
a8edf13 633ca15 a8edf13 633ca15 a8edf13 426f541 633ca15 a8edf13 633ca15 a8edf13 633ca15 a8edf13 54a60bc a8edf13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-MM_Classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8693982074263764
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-MM_Classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3468
- Accuracy: 0.8694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0476 | 1.0 | 19 | 0.7707 | 0.6530 |
| 0.6226 | 2.0 | 38 | 0.4743 | 0.8105 |
| 0.4477 | 3.0 | 57 | 0.4133 | 0.8323 |
| 0.3963 | 4.0 | 76 | 0.3813 | 0.8476 |
| 0.3694 | 5.0 | 95 | 0.3753 | 0.8540 |
| 0.3451 | 6.0 | 114 | 0.3587 | 0.8489 |
| 0.3382 | 7.0 | 133 | 0.3531 | 0.8451 |
| 0.3253 | 8.0 | 152 | 0.3498 | 0.8579 |
| 0.3121 | 9.0 | 171 | 0.3437 | 0.8579 |
| 0.2855 | 10.0 | 190 | 0.3447 | 0.8656 |
| 0.2961 | 11.0 | 209 | 0.3350 | 0.8617 |
| 0.273 | 12.0 | 228 | 0.3484 | 0.8566 |
| 0.2745 | 13.0 | 247 | 0.3433 | 0.8604 |
| 0.2613 | 14.0 | 266 | 0.3498 | 0.8643 |
| 0.2527 | 15.0 | 285 | 0.3365 | 0.8579 |
| 0.2619 | 16.0 | 304 | 0.3450 | 0.8617 |
| 0.2436 | 17.0 | 323 | 0.3454 | 0.8681 |
| 0.2518 | 18.0 | 342 | 0.3437 | 0.8681 |
| 0.243 | 19.0 | 361 | 0.3468 | 0.8694 |
| 0.2415 | 20.0 | 380 | 0.3455 | 0.8694 |
### Framework versions
- Transformers 4.43.3
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|