diwank/dfe-base-en-1
This is a sentence-transformers model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('diwank/dfe-base-en-1')
embeddings = model.encode(sentences)
print(embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 2562 with parameters:
{'batch_size': 1320, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.TripletLoss.TripletLoss
with parameters:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
Parameters of the fit()-Method:
{
"epochs": 6,
"evaluation_steps": 1500,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>",
"optimizer_params": {
"lr": 0.0001,
"weight_decay": 0.01
},
"scheduler": "WarmupCosine",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Asym(
(dialog-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
)
Citing & Authors
- Downloads last month
- 37
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.