See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 311330e8a1d55a86_train_data.json
ds_type: json
field: issue
path: /workspace/input_data/311330e8a1d55a86_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik1987/b6618d56-6c88-4033-ade8-8135764c1751
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/311330e8a1d55a86_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 2028
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b6618d56-6c88-4033-ade8-8135764c1751
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b6618d56-6c88-4033-ade8-8135764c1751
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
b6618d56-6c88-4033-ade8-8135764c1751
This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.7704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.7756 | 0.0101 | 1 | 11.7756 |
11.7731 | 0.0302 | 3 | 11.7755 |
11.7782 | 0.0605 | 6 | 11.7751 |
11.7727 | 0.0907 | 9 | 11.7742 |
11.7804 | 0.1209 | 12 | 11.7731 |
11.7798 | 0.1511 | 15 | 11.7719 |
11.7758 | 0.1814 | 18 | 11.7710 |
11.7673 | 0.2116 | 21 | 11.7706 |
11.7682 | 0.2418 | 24 | 11.7704 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Model tree for dimasik1987/b6618d56-6c88-4033-ade8-8135764c1751
Base model
llamafactory/tiny-random-Llama-3