File size: 1,255 Bytes
caef264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
tags:
- ernie
- health
- tweet
datasets:
- custom-phm-tweets
metrics:
- accuracy
model-index:
- name: ernie-phmtweets-sutd
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: custom-phm-tweets
      type: labelled
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.885
---

# distilbert-phmtweets-sutd

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The dataset was used in an [Emory University Study on Detection of Personal Health Mentions in Social Media](https://arxiv.org/pdf/1802.09130v2.pdf), with this [custom dataset](https://github.com/emory-irlab/PHM2017).

It achieves the following results on the evaluation set:
- Accuracy: 0.885

## Usage

`from transformers import AutoTokenizer, AutoModelForSequenceClassification`

`tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`

`model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`


### Model Evaluation Results
With Validation Set
- Accuracy: 0.889763779527559

With Test Set
- Accuracy: 0.884643644379133