dibsondivya commited on
Commit
caef264
1 Parent(s): 7d6650e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ernie
4
+ - health
5
+ - tweet
6
+ datasets:
7
+ - custom-phm-tweets
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: ernie-phmtweets-sutd
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: custom-phm-tweets
18
+ type: labelled
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.885
23
+ ---
24
+
25
+ # distilbert-phmtweets-sutd
26
+
27
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The dataset was used in an [Emory University Study on Detection of Personal Health Mentions in Social Media](https://arxiv.org/pdf/1802.09130v2.pdf), with this [custom dataset](https://github.com/emory-irlab/PHM2017).
28
+
29
+ It achieves the following results on the evaluation set:
30
+ - Accuracy: 0.885
31
+
32
+ ## Usage
33
+
34
+ `from transformers import AutoTokenizer, AutoModelForSequenceClassification`
35
+
36
+ `tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`
37
+
38
+ `model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`
39
+
40
+
41
+ ### Model Evaluation Results
42
+ With Validation Set
43
+ - Accuracy: 0.889763779527559
44
+
45
+ With Test Set
46
+ - Accuracy: 0.884643644379133