Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 48.08
ARC (25-shot) 60.41
HellaSwag (10-shot) 82.58
MMLU (5-shot) 55.86
TruthfulQA (0-shot) 43.61
Winogrande (5-shot) 76.72
GSM8K (5-shot) 8.49
DROP (3-shot) 8.92
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dhmeltzer/Llama-2-13b-hf-ds_eli5_1024_r_64_alpha_16

Adapter
(195)
this model