albert-xxlarge-v2-Adapters
This model is a fine-tuned version of albert/albert-xxlarge-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.121 | 0.1146 | 50 | 1.0992 |
1.1183 | 0.2292 | 100 | 1.0918 |
1.1155 | 0.3438 | 150 | 1.0899 |
1.0405 | 0.4585 | 200 | 0.9750 |
0.9 | 0.5731 | 250 | 0.9008 |
0.8362 | 0.6877 | 300 | 0.8511 |
0.7714 | 0.8023 | 350 | 0.8039 |
0.7385 | 0.9169 | 400 | 0.7617 |
0.7422 | 1.0315 | 450 | 0.7265 |
0.6513 | 1.1461 | 500 | 0.7158 |
0.7349 | 1.2607 | 550 | 0.6831 |
0.6515 | 1.3754 | 600 | 0.6679 |
0.6054 | 1.4900 | 650 | 0.6465 |
0.6069 | 1.6046 | 700 | 0.6364 |
0.6132 | 1.7192 | 750 | 0.6344 |
0.6195 | 1.8338 | 800 | 0.6366 |
0.6026 | 1.9484 | 850 | 0.6313 |
0.507 | 2.0630 | 900 | 0.5977 |
0.5555 | 2.1777 | 950 | 0.5871 |
0.5855 | 2.2923 | 1000 | 0.5835 |
0.5642 | 2.4069 | 1050 | 0.5956 |
0.5937 | 2.5215 | 1100 | 0.5791 |
0.5763 | 2.6361 | 1150 | 0.5756 |
0.5041 | 2.7507 | 1200 | 0.5729 |
0.5753 | 2.8653 | 1250 | 0.5720 |
0.5546 | 2.9799 | 1300 | 0.5628 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.1.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for dhanishetty/albert-xxlarge-v2-Adapters
Base model
albert/albert-xxlarge-v2