Visualize in Weights & Biases

albert-xxlarge-v2-Adapters

This model is a fine-tuned version of albert/albert-xxlarge-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.121 0.1146 50 1.0992
1.1183 0.2292 100 1.0918
1.1155 0.3438 150 1.0899
1.0405 0.4585 200 0.9750
0.9 0.5731 250 0.9008
0.8362 0.6877 300 0.8511
0.7714 0.8023 350 0.8039
0.7385 0.9169 400 0.7617
0.7422 1.0315 450 0.7265
0.6513 1.1461 500 0.7158
0.7349 1.2607 550 0.6831
0.6515 1.3754 600 0.6679
0.6054 1.4900 650 0.6465
0.6069 1.6046 700 0.6364
0.6132 1.7192 750 0.6344
0.6195 1.8338 800 0.6366
0.6026 1.9484 850 0.6313
0.507 2.0630 900 0.5977
0.5555 2.1777 950 0.5871
0.5855 2.2923 1000 0.5835
0.5642 2.4069 1050 0.5956
0.5937 2.5215 1100 0.5791
0.5763 2.6361 1150 0.5756
0.5041 2.7507 1200 0.5729
0.5753 2.8653 1250 0.5720
0.5546 2.9799 1300 0.5628

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.1.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dhanishetty/albert-xxlarge-v2-Adapters

Adapter
(2)
this model