Text Generation
PEFT
Safetensors
File size: 5,342 Bytes
5c6c6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50041db
5c6c6e1
5d578ca
 
 
 
3034a85
5d578ca
 
5c6c6e1
 
 
 
 
 
 
 
 
 
 
 
 
0a4d2de
5c6c6e1
 
 
 
 
 
 
 
 
b679fa8
5c6c6e1
 
0a4d2de
 
5c6c6e1
 
127d5ba
5c6c6e1
 
 
 
a1ad655
b679fa8
a1ad655
 
5c6c6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b679fa8
5c6c6e1
 
 
 
 
 
b679fa8
5c6c6e1
b679fa8
5c6c6e1
 
b679fa8
 
 
 
5c6c6e1
1a8b424
5c6c6e1
 
b679fa8
 
 
 
 
 
 
5c6c6e1
b679fa8
 
 
fb3eaed
5c6c6e1
 
 
 
 
 
 
 
 
24e8539
5c6c6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b679fa8
5c6c6e1
 
 
 
 
 
 
 
 
 
a1ad655
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
datasets:
- OpenAssistant/oasst1
pipeline_tag: text-generation
---

# Falcon-7b-chat-oasst1

Falcon-7b-chat-oasst1 is a chatbot-like model for dialogue generation. It was built by fine-tuning [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) on the [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset. 

## Model Summary

- **Model Type:** Causal decoder-only
- **Language(s) (NLP):** English (primarily)
- **Base Model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) (License: [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b#license), commercial use ok-ed)
- **Dataset:** [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) (License: [Apache 2.0](https://huggingface.co/datasets/OpenAssistant/oasst1/blob/main/LICENSE), commercial use ok-ed)
- **License:** Inherited from the above "Base Model" and "Dataset"

## Model Details

- The model was fine-tuned in 4-bit precision using 🤗 `peft` adapters, `transformers`, and `bitsandbytes`.
- Training relied on a method called "Low Rank Adapters" ([LoRA](https://arxiv.org/pdf/2106.09685.pdf)), specifically the [QLoRA](https://arxiv.org/abs/2305.14314) variant.
- The run took approximately 3 hours and was executed on a workstation with a single A100-SXM NVIDIA GPU with 37 GB of available memory.
- See attached [Colab Notebook](https://huggingface.co/dfurman/falcon-7b-chat-oasst1/blob/main/finetune_falcon7b_oasst1_with_bnb_peft.ipynb) for the code and hyperparams used to train the model. 

### Model Date

May 30, 2023

## Quick Start

To prompt the chat model, use the following format:

```
<human>: [Instruction]
<bot>:
```

### Example Dialogue 1

**Prompter**:
```
"""<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""
```

**Falcon-7b-chat-oasst1**:
```
[coming]
```

### Example Dialogue 2

**Prompter**:
```
<human>: Create a list of four things to do in San Francisco.
<bot>:
```

**Falcon-7b-chat-oasst1**:
```
[coming]
```

### Direct Use

This model has been finetuned on conversation trees from [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) and should only be used on data of a similar nature.

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. 

## Bias, Risks, and Limitations

This model is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of this model to develop guardrails and to take appropriate precautions for any production use.

## How to Get Started with the Model

### Setup
```python
# Install packages
!pip install -q -U bitsandbytes loralib einops
!pip install -q -U git+https://github.com/huggingface/transformers.git 
!pip install -q -U git+https://github.com/huggingface/peft.git
!pip install -q -U git+https://github.com/huggingface/accelerate.git
```

### GPU Inference in 4-bit

This requires a GPU with at least XXGB of memory.

```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# load the model
peft_model_id = "dfurman/falcon-7b-chat-oasst1"
config = PeftConfig.from_pretrained(peft_model_id)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=bnb_config,
    device_map={"":0},
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token

model = PeftModel.from_pretrained(model, peft_model_id)

# run the model
prompt = """<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""

batch = tokenizer(
    prompt,
    padding=True,
    truncation=True,
    return_tensors='pt'
)
batch = batch.to('cuda:0')

with torch.cuda.amp.autocast():
    output_tokens = model.generate(
        input_ids = batch.input_ids, 
        max_new_tokens=200,
        temperature=0.7,
        top_p=0.7,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )

# Inspect outputs
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
```

## Reproducibility

- See attached [Colab Notebook](https://huggingface.co/dfurman/falcon-7b-chat-oasst1/blob/main/finetune_falcon7b_oasst1_with_bnb_peft.ipynb) for the code (and hyperparams) used to train the model. 

### CUDA Info

- CUDA Version: 12.0
- GPU Name: NVIDIA A100-SXM
- Max Memory: {0: "37GB"}
- Device Map: {"": 0}

### Package Versions Employed

- `torch`: 2.0.1+cu118
- `transformers`: 4.30.0.dev0
- `peft`: 0.4.0.dev0
- `accelerate`: 0.19.0
- `bitsandbytes`: 0.39.0
- `einops`: 0.6.1