Türkçe Multi-label Intent Classification RoBERTa

Depremzedelerin ihtiyaçlarını karşılamak için etiketlenmiş eğitilmiş multi-label RoBERTa modeli. Aşağıda değerlendirme sonuçları var.

Evaluation

  • 'eval_loss': 0.18568251545368838,

  • 'eval_runtime': 2.7693,

  • 'eval_samples_per_second': 254.935,

  • 'eval_steps_per_second': 8.305,

  • 'epoch': 3.0

Classification Report

    precision    recall  f1-score   support

    Alakasiz       0.95      0.87      0.91       781
     Barinma       0.86      0.52      0.65       234
  Elektronik       0.00      0.00      0.00       171
       Giysi       0.89      0.25      0.39       122
    Kurtarma       0.86      0.78      0.82       472
    Lojistik       0.00      0.00      0.00       123
      Saglik       0.78      0.05      0.09       148
          Su       0.92      0.11      0.20        96
       Yagma       0.00      0.00      0.00        19
       Yemek       0.94      0.42      0.58       158

   micro avg       0.91      0.55      0.69      2324
   macro avg       0.62      0.30      0.36      2324
weighted avg       0.78      0.55      0.61      2324
 samples avg       0.69      0.63      0.65      2324
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using deprem-ml/deprem-roberta-intent 2

Evaluation results