File size: 2,094 Bytes
073ba8f
9fe7f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073ba8f
9fe7f36
 
073ba8f
9fe7f36
073ba8f
9fe7f36
 
874e8ca
9fe7f36
 
 
 
0e3a630
9fe7f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073ba8f
9fe7f36
 
 
 
 
 
 
 
 
073ba8f
9fe7f36
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- dpo
- rlhf
datasets:
- mlabonne/chatml_dpo_pairs
- Intel/orca_dpo_pairs
base_model: teknium/OpenHermes-2.5-Mistral-7B

---
### Credits: Maxime Labonne https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac

(With minor alterations)

# NeuralHermes 2.5 - Mistral 7B

NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs) dataset. .


## Usage

You can run this model using the following code:

```python
import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])
```

## Training hyperparameters

**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']

**Training arguments**:
* per_device_train_batch_size=2 # Changed from 4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=2e-5 # Changed from 5e-5
* lr_scheduler_type="cosine"
* max_steps=250 # Changed from 200
* optim="paged_adamw_32bit"
* warmup_steps=100

**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536